Convex Codes and Minimal Embedding Dimensions

Megan Franke

UC Santa Barbara

July 17, 2017

Franke (UCSB)

Just Convex Realization

July 17, 2017 1 / 21

• 2014 Nobel Prize in Physiology or Medicine: Place Cells

- 2014 Nobel Prize in Physiology or Medicine: Place Cells
- Each place cell corresponds to a receptive field

- 2014 Nobel Prize in Physiology or Medicine: Place Cells
- Each place cell corresponds to a receptive field
- The receptive fields from a set of neurons give us a neural code

Figure: Place Cells

Neural Code Example

Convex Code: $\{\emptyset, 1, 2, 12\}$

Franke (UCSB)

July 17, 2017 3 / 21

We say that a code C is a *convex code on n neurons* if there exists a collection of sets $U = \{U_1, U_2, \ldots, U_n\}$ such that for each $i \in [n]$, U_i is a convex subset of \mathbb{R}^d and C(U) = C. A code C = C(U) is *open convex* or *closed convex* if the $U_i \in U$ are all open or all closed.

Goal

Classify which codes are convex open, convex closed, just convex, or not convex at all.

Goal

Classify which codes are convex open, convex closed, just convex, or not convex at all.

Theorem (F., Muthiah)

Every neural code is just convex.

Let X_1, X_2, \ldots, X_n be subsets of \mathbb{R}^d . Define the *convex hull* of X_1, X_2, \ldots, X_n to be the smallest convex set in \mathbb{R}^d containing X_1, X_2, \ldots, X_n , denoted by $\operatorname{conv}(X_1, X_2, \ldots, X_n)$.

Let X_1, X_2, \ldots, X_n be subsets of \mathbb{R}^d . Define the *convex hull* of X_1, X_2, \ldots, X_n to be the smallest convex set in \mathbb{R}^d containing X_1, X_2, \ldots, X_n , denoted by $\operatorname{conv}(X_1, X_2, \ldots, X_n)$.

Let $X_1 = (0, 0, 0)$, $X_2 = (1, 0, 0)$, $X_3 = (0, 1, 0)$, and $X_4 = (0, 0, 1)$.

Let X_1, X_2, \ldots, X_n be subsets of \mathbb{R}^d . Define the *convex hull* of X_1, X_2, \ldots, X_n to be the smallest convex set in \mathbb{R}^d containing X_1, X_2, \ldots, X_n , denoted by $\operatorname{conv}(X_1, X_2, \ldots, X_n)$.

Let $X_1 = (0, 0, 0)$, $X_2 = (1, 0, 0)$, $X_3 = (0, 1, 0)$, and $X_4 = (0, 0, 1)$. Then the convex hull of $\{X_1, X_2, X_3, X_4\}$ is

Let C be a code on n neurons where $C \setminus \{\emptyset\} = \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ and let $\{e_1, \ldots, e_{k-1}\}$ be the standard basis for \mathbb{R}^{k-1} .

Let C be a code on n neurons where $C \setminus \{\emptyset\} = \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ and let $\{e_1, \ldots, e_{k-1}\}$ be the standard basis for \mathbb{R}^{k-1} .

Take σ_1 . Then for every $j \in [n]$, if $j \in \sigma_1$ define V_j^1 to be the closed point at the origin.

 $V_i^1 \bullet$

Otherwise, define $V_i^1 = \emptyset$.

Take σ_2 . Then for every $j \in [n]$, if $j \in \sigma_2$ define V_j^2 to be $\operatorname{conv}\{0, e_1\} - \{0\}$.

Otherwise, define $V_i^2 = \emptyset$.

Next take σ_3 . Then for every $j \in [n]$, if $j \in \sigma_3$ define V_j^3 to be $\operatorname{conv}\{0, e_1, e_2\}$, but open along its intersection with $\operatorname{conv}\{0, e_1\}$.

Otherwise, define $V_j^3 = \emptyset$.

Continuing in this way, for all $j \in [n]$, if $j \in \sigma_m$, define V_j^m to be $\operatorname{conv}\{0, e_1, e_2, \ldots, e_{m-1}\}$, but open along its intersection with $\operatorname{conv}\{0, e_1, e_2, \ldots, e_{m-2}\}$. Otherwise, define $V_j^m = \emptyset$.

When this has been completed for all $\sigma_j \in C$, define

$$U_j = \bigcup_{i \in [k]} V_j^i = V_j^1 \cup V_j^2 \cup \ldots \cup V_j^k$$

for all $j \in [n]$.

Let $\mathcal{C} = \{ \emptyset, 12, 13, 23 \}.$

・ロト ・日下 ・ 日下

Let $C = \{\emptyset, 12, 13, 23\}$. Then $\sigma_1 = 12$, $\sigma_2 = 13$, $\sigma_3 = 23$.

Franke (UCSB)

Image: A matrix and A matrix

Let $C = \{\emptyset, 12, 13, 23\}$. Then $\sigma_1 = 12$, $\sigma_2 = 13$, $\sigma_3 = 23$.

 $V_{neuron}^{codeword\#}$

э

Let $C = \{\emptyset, 12, 13, 23\}$. Then $\sigma_1 = 12$, $\sigma_2 = 13$, $\sigma_3 = 23$.

 $V_{neuron}^{codeword\#}$

3

Let $C = \{\emptyset, 12, 13, 23\}$. Then $\sigma_1 = 12$, $\sigma_2 = 13$, $\sigma_3 = 23$.

 $V_{neuron}^{codeword\#}$

▲ @ ▶ < ∃ ▶</p>

Let $C = \{\emptyset, 12, 13, 23\}$. Then $\sigma_1 = 12$, $\sigma_2 = 13$, $\sigma_3 = 23$.

 $V_{neuron}^{codeword\#}$

Franke (UCSB)

Just Convex Realization

July 17, 2017 12 / 21

◆ □ ▶ ◆ 🗇

≣ ব ≣ চ ≣ তিও July 17, 2017 13 / 21

Minimal Embedding Dimension

 $\{\emptyset, 1, 2, 3, 4, 5, 12, 15, 23, 24, 25, 34, 45, 56, 125, 234, 245\}$

Minimal Embedding Dimension

 $\{\emptyset, 1, 2, 3, 4, 5, 12, 15, 23, 24, 25, 34, 45, 56, 125, 234, 245\}$

Franke (UCSB)

July 17, 2017 14 / 21

Let C be a convex code on n neurons. Suppose C is realized by $U = \{U_1, U_2, \ldots, U_n\}$ where each $U_i \subset \mathbb{R}^d$ is convex.

- The minimal such d is the minimal embedding dimension of C.
- If we require all $U_i \in \mathcal{U}$ to be open, the minimal such d is the minimal open embedding dimension of C.
- If we require all U_i ∈ U to be closed, the minimal such d is the minimal closed embedding dimension of C.

Define C_n to be the code on n neurons containing all codewords of length n-1,

$$\mathcal{C}_n = \{ \sigma \mid \sigma \subseteq [n], |\sigma| = n - 1 \}.$$

Note that $|\mathcal{C}_n| = \binom{n}{n-1} = n$.

Define C_n to be the code on n neurons containing all codewords of length n-1,

$$\mathcal{C}_n = \{ \sigma \mid \sigma \subseteq [n], |\sigma| = n - 1 \}.$$

Note that
$$|\mathcal{C}_n| = \binom{n}{n-1} = n$$
.

Theorem (F., Muthiah)

For every n, C_n has minimal embedding dimension n-1.

▶ < ∃ ▶ < ∃</p>

Let $C_3 = \{\emptyset, 12, 13, 23\}$ and $\mathcal{U} = \{U_1, U_2, U_3\}$ be a realization of C_3 .

< A

Let $C_3 = \{\emptyset, 12, 13, 23\}$ and $U = \{U_1, U_2, U_3\}$ be a realization of C_3 .

Then there exists points a_{12} , a_{13} , and a_{23} such that

 $a_{12} \in U_1 \cap U_2, \qquad a_{13} \in U_1 \cap U_3, \qquad a_{23} \in U_2 \cap U_3.$

Franke (UCSB)

Let $C_3 = \{\emptyset, 12, 13, 23\}$ and $U = \{U_1, U_2, U_3\}$ be a realization of C_3 .

Then there exists points a_{12} , a_{13} , and a_{23} such that

$$a_{12} \in U_1 \cap U_2, \qquad a_{13} \in U_1 \cap U_3, \qquad a_{23} \in U_2 \cap U_3.$$

Suppose toward contradiction that C_3 has a realization in 1 dimension.

Then, a_{12} , a_{13} , and a_{23} must be collinear.

$$C_3 = \{\emptyset, 12, 13, 23\}$$

$a_{12} \in U_1 \cap U_2$ $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

$$C_3 = \{\emptyset, 12, 13, 23\}$$

$$a_{12} \in U_1 \cap U_2$$
 $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

$$C_3 = \{\emptyset, 12, 13, 23\}$$

$$a_{12} \in U_1 \cap U_2$$
 $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

◆□ → <四 → < Ξ → < Ξ → < Ξ → のへで</p>

$$C_3 = \{\emptyset, 12, 13, 23\}$$

$$a_{12} \in U_1 \cap U_2$$
 $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

$$C_3 = \{\emptyset, 12, 13, 23\}$$

$$a_{12} \in U_1 \cap U_2$$
 $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

◆□ → <四 → < Ξ → < Ξ → < Ξ → のへで</p>

$$C_3 = \{\emptyset, 12, 13, 23\}$$

$$a_{12} \in U_1 \cap U_2$$
 $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

$$C_3 = \{\emptyset, 12, 13, 23\}$$

$$a_{12} \in U_1 \cap U_2$$
 $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

$$\mathcal{C}_3=\{\emptyset,12,13,23\}$$

$$a_{12} \in U_1 \cap U_2$$
 $a_{13} \in U_1 \cap U_3$ $a_{23} \in U_2 \cap U_3$

< E

・ロト ・回ト ・ヨト

New Questions:

- Since every code is convex, what is the minimal embedding dimension of an arbitrary code?
- When is the minimal open/closed embedding dimension strictly greater than the minimal embedding dimension of a code?
- When is the minimal open/closed embedding dimension equal to the minimal embedding dimension of a code?

I would like to thank:

- Advisor: Dr. Anne Shiu
- Graduate Student Mentor: Ola Sobieska
- Project Partner: Samuel Muthiah
- Funding: National Science Foundation
- Host: Texas A&M University

Thank you!

3

(日)