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Abstract

Neural codes are binary codes in {0, 1}n; here we focus on the ones which
represent the firing patterns of a type of neurons called place cells. There is
much interest in determining which neural codes can be realized by a collection
of convex sets. However, drawing these convex sets, particularly as the number
of neurons in a code increases, can be very difficult. It has been shown that
an algorithm for drawing Euler diagrams can be used to draw a class of codes
that are said to be k-inductively pierced for k = 0, 1, 2. We use the toric ideal,
to show sufficient conditions for a code to be 1- or 2-inductively pierced.

1 Introduction
John O’Keefe’s discovery of place cells earned him the 2014 Nobel Prize for Physi-
ology or Medicine [12]. Place cells are a type of neuron found in certain mammals
(including rats, cats, and bats) that help them to locate themselves spatially by firing
only when the mammal is in a certain part of its environment. The receptive fields,
or areas where the neurons fire, are approximately convex, and can be represented
by neural codes. Much study has been done on convex neural codes, specifically
focusing on which codes are convex realizable, that is, for which codes one can draw
convex receptive fields that correspond to the code [2, 3, 5, 6, 9, 10, 13]. However,
if a convex realization exists it can be very difficult to actually draw one. Far less
work has been done on how to draw realizations of neural codes. However, [8] have
shown that the algorithm created by [14] to draw Euler diagrams can be used to
create realizations of codes that are 0-, 1-, or 2-inductively pierced. In this paper,
we explore sufficient conditions for 1- and 2-inductively pierced codes. In Section 2,
we discuss the definitions necessary for our main results, which we present in Section
3. We conclude with a discussion of our findings in Section 4.

2 Background
We follow the definitions from [8].

Definition 2.1. A neural code on n neurons is a set of binary strings C ⊆ {0, 1}n.
An element σ of C is a codeword.

We will assume that the empty codeword is always in a neural code.
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Definition 2.2. A realization of a code C is a collection of sets U = {U1, . . . , Un}
where Ui ∈ Rd such that C = C(U) := {σ ∈ [n] | Uσ \

⋃
j∈[n]\σ Uj 6= ∅}. A Ui ∈ U is

a place field of the neuron i. A zone in C is the intersection of a collection of place
fields {Ui} and each zone corresponds to a codeword.

Definition 2.3. A code C is convex open if it is realizable by U = {U1, . . . , Un}
where all the Ui are convex open sets.

In this paper, we will work under with neural codes that are convex open and
realizable in dimension 2. Furthermore, we will assume that our codes are well-
formed.

Definition 2.4. A code C is well-formed if there exists realization of C such that

• The boundary curves of place fields intersect at only a finite number of points.

• At any given point, at most two boundaries of place fields intersect.

• Each zone is connected.

U1 U2 U1

U2

U3

U1

U2

Figure 1: Figures that violate the three parts of the definition of well-formed

Example 2.5. As an example, consider the code C = {000, 100, 001, 101, 011, 111}.
This neural code is convex open and realizable in dimension 2. A well-formed real-
ization of C is shown in Figure 2. The realization is comprised of 6 zones, one for
each codeword, including the empty zone.

U3 U1U2

Figure 2: A realization of the code C = {000, 100, 001, 101, 011, 111}

Definition 2.6. A k-piercing is a place field U` whose boundary intersects the
boundaries of k other place fields U1, . . . , Uk and adds exactly 2k zones to an existing
diagram. A k-piercing is identified by a zone in the diagram in which the place field
U` is contained.

For example, in Figure 2, U2 is a 1-piercing of U1 identified by the zone 001.
Notice that U1 is not a 2-piercing; its boundary intersects the boundaries of two
place fields, adding it does not add 4 new regions to the diagram.
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Definition 2.7. Let C = {σ1, . . . , σm} be a code on n neurons. C is k-inductively
pierced if there exists a k-piercing Uλ in C such that C \ λ := {σ̂1, . . . , σ̂m} is k-
inductively pierced where σ̂i = σi except σ̂i has a 0 in the λth position.

In this paper will will assume that if a code is k-inductively pierced, the code is
not (k + 1)-inductively pierced.

Definition 2.8. Define φc : F2[pc | c ∈ C]→ F2[xi | i ∈ [n]]

pc 7→
∏

i∈supp(c)

xi.

Then, IC := kerφC is the toric ideal of C.

The toric ideal has the computational benefit of being relatively quick to compute
using Macaulay2 [7] with the 4ti2 package [1], or with SAGE [4].

In [8], the authors investigated algebraic signatures for 0-,1-, and 2-inductively
pierced codes by considering generators of IC. In particular, they give necessary and
sufficient conditions for 0-inductively pierced codes, along with necessary conditions
for 1-inductively pierced codes.

Theorem 2.9 ([8]). Let C be a well-formed neural code on n neurons.

1. The neural code C is 0-inductively pierced if and only if IC = 〈0〉.

2. If the neural code C is 0- or 1- inductively pierced then IC = 〈0〉 or generated
by quadratics.

3. If the neural code C contains a triple intersection where the intersections are
general, IC contains a binomial of degree 3 of particular form, in particular
p111wp

2
000v − p100vp010vp001w or p111w − p100...0p010...0p001w where v, w ∈ {0, 1}n−3

correspond to zones in C(U).

We note that the third claim in Theorem 2.9 includes the case of codes with
2-piercings (Proposition 4.3.1 in [11]) and the case of 2-inductively pierced codes, as
summarized by Lemma 2.10.

Lemma 2.10. If a neural code C contains a 2-piercing or is 2-inductively pierced,
then IC contains a cubic of form p111wp

2
000v−p100vp010vp001w or p111w−p100...0p010...0p001w

where v = w.

We refer to the binomial p111wp2000v − p100vp010vp001w for w, v ∈ {0, 1}n−3 as a
cubic of a particular form or particular cubic.

In the next section, we investigate sufficient conditions for 1- and 2-inductively
pierced codes, and improve upon the second and third statements from Theorem
2.9.

3 Main Results
Throughout the rest of this paper, we assume that C = C(U) is a convex open neural
code on n neurons that is realizable in dimension 2, so U = {U1, . . . , Un} and the
Ui ⊂ R2.
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Proposition 3.1. Let C be a well-formed code on n neurons, and let IC be its toric
ideal. If there exists a cubic generator of IC of the form p111wp

2
000v − p100wp010vp001v

(where w, v ∈ {0, 1}n−3), then C\{4, . . . , n}. is 2-inductively pierced.

Proof. The existence of such a cubic in IC implies that the code contains a triple
intersection of U1, U2, and U3 along with the associated singletons. Since the code
is well formed, it must also contain the pairwise intersections. Thus, if all other
neurons are removed, the remaining code is clearly 2-pierced.

Corollary 3.2. If p111wp2000v − p100wp010vp001v ∈ IC, then C is not 1-inductively
pierced.

Proof. Assume C is 1-inductively pierced. By Proposition 3.1, C\{4, . . . , n} contains
a 2-piercing. Thus, U1 cannot be a 0- or 1-piercing unless either U2 or U3 is removed.
Since the same is true of U2 and U3, none of them can possibly be 0- or 1-piercings.
Thus C is not 1-inductively pierced, since as place fields that are 0- or 1-piercings
are removed, eventually C\{4, . . . , n} must be all that is left. However, C\{4, . . . , n}
is not 1-inductively pierced, resulting in a contradiction.

Corollary 3.3. If p111wp2000v − p100wp010vp001v ∈ IC and w 6= v, then C does not
contain a 2-piercing, or the 2-piercing is contained within another receptive field
and there must exist another cubic with v = w.

Proof. If w 6= v, then there exists some zone in the potential 2-piercing that is
contained in a different zone than other zones in the 2-piercing. Assume that the
other zone does not contain an entire receptive field. Then, since the realization
is well-formed, C must not contain a 2-piercing. If the other zone does contain an
entire receptive field, then the 2-piercing must take place inside this other zone, thus
there must also exist a cubic such that v = w.

Lemma 3.4. Let C be a code on n neurons such that in C \ {3, . . . , n}, U1 is a
1-piercing of U2 and there do not exist i, j, k ∈ [n] such that in C \ ([n] \ {i, j, k}),
Ui is a 2-piercing of Uj and Uk. Then C is 1-inductively pierced.

Proof. Suppose towards contradiction that C is not 1-inductively pierced. Then,
there must be some neuron s such that Us intersects both U1 and U2 such that fewer
than 4 zones are created and neither U1 nor U2 is a 2-piercing of Us. However, this
can only happen if C is not well-formed. However, we assumed that C is well-formed,
resulting in a contradiction.

Theorem 3.5. Let C be a well-formed code on n neurons, and let IC be its toric
ideal. If there exists a cubic of the form p111wp

2
000v − p100wp010vp001v ∈ IC and in all

such cases w = v, then C is 2-inductively pierced.

Proof. We will proceed by proving the contrapositive. That is, we will assume that
C is not 2-inductively pierced and show that whenever the toric ideal contains cubics
of the particular form, there exists one such cubic with w 6= v.

By Proposition 3.1 C\{4, . . . , n} is 2-inductively pierced, so without loss of gen-
erality, U1, U2, U3 are all two-piercings of each other.

Suppose that there exists some Uj that obstructs U1, U2, and U3 from being
2-piercings of each other in C. If Uj contains the triple intersection, then all zones
other than the triple intersection are partially contained in Uj.

4



If Uj does not contain the triple intersection, then Uj partially contains it. In ei-
ther case, we have the zones necessary to construct a cubic with v 6= w, as illustrated
in Figure 3.

Furthermore, using the proof of Lemma 3.4, the only way for C to fail to be
2-inductively pierced is if there exists such a Uj. That is to say, there must be a
curve Uj that obstructs U1, U2, and U3 from all being two piercings of each other,
so Uj cannot be a 0- or 1-piercing.

Thus, there must exist a cubic of form p111wp
2
000v − p100wp010vp001v ∈ IC where

v 6= w.

Proposition 3.6. Let C be a well formed code on n neurons. If there is no cubic
of the form p111wp

2
000v − p100wp010vp001v ∈ IC and IC 6= 〈0〉, then C is 1-inductively

pierced.

Proof. The lack of a cubic of form p111wp
2
000v−p100wp010vp001v ∈ IC implies that there

do not exist i, j, k ∈ [n] such that in C \ ([n] \ {i, j, k}), Ui is a 2-piercing of Uj and
Uk. Since IC 6= 〈0〉, C cannot be 0-inductively pierced, thus there must be some
curves that intersect. Thus by Lemma 3.4 C must be 1-inductively pierced.

U1

U2

U3

U4

U1

U2

U3

U4

Figure 3: Examples of codes that are not 2-inductively pierced and have cubics of
particular form where v 6= w in IC. Note that on the left, U4 contains the entire
triple intersection U1 ∩ U2 ∩ U3, and on the right U4 partially contains the triple
intersection.

The existence of particular cubic binomials in the toric ideal can tell us much
about the code. However, computing the entire toric ideal is computationally ex-
pensive; we would much rather only look at generating sets. Unfortunately, the
existence of particular cubics in the toric ideal does not imply they are generators.

Example 3.7. As discussed in [11], one generating set for the toric ideal of the
code A1 = {000, 100, 010, 001, 110, 101, 011, 111} is {p111 − p100p010p001, p110 −
p100p010, p101− p100p001, p011− p010p001}. This generating set has a particular cubic.
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Another generating set for for IA1, which consists only of quadratics is {p110 −
p100p010, p101 − p100p001, p011 − p010p001, p111 − p110p001}.

From the second generating set for IA1 in Example 3.7, we notice that a priori
we may not immediately see the existence of a particular cubic from the generators
directly. However, there is a class of quadratics that can imply the existence of the
particular cubics.

Definition 3.8. Let C be code on n neurons and w, v ∈ {0, 1}n−3. A pair of
quadratics of a particular form{
p111wp000v − p110wp001v
p110wp000v − p100wp010v

or

{
p111wp000v − p101wp010v
p101wp000v − p100wp001v

or

{
p111wp000v − p011wp100v
p011wp000v − p010wp001v

are called friendly quadratics.

Proposition 3.9. Let z ∈ {0, 1}n−3. If any of the friendly quadratics are in the
generating set for the toric ideal IC of C, then IC contains a cubic of the form
p111zp

2
000z − p100zp010zp001z.

Proof. This is straightforward to see since IC is an ideal, hence is closed under
multiplication by elements of the ring. Consider the first case. Since p111wp000v −
p110zp001z ∈ IC, we get that p000z, p001z ∈ F2[pc | c ∈ C] and so,

p111zp
2
000z − p100zp010zp001z = p000z(p111zp000z − p110zp001z)

+ p001z(p110zp000z − p100zp010z) ∈ IC.

Example 3.10. Consider the following neural code on 5 neurons, C ={00001, 10001,
01001, 00011, 11001, 10011, 01011, 00111, 11011, 10111, 01111, 11111}. One gener-
ating set for IC is

〈p00111p11111 − p10111p01111, p01011p11111 − p11011p01111, p10011p11111 − p11011p10111,
p00011p11011 − p10011p01011, p00011p10111 − p10011p00111, p00011p11111 − p10011p01111,
p00011p01111 − p01011p00111, p00011p11111 − p01011p10111, p00011p11111 − p00111p11011,
p01001p10011 − p00011p11001, p01001p11011 − p11001p01011, p01001p10111 − p11001p00111,
p01001p11111 − p11001p01111, p10001p01011 − p00011p11001, p10001p11011 − p11001p10011,
p10001p01111 − p11001p00111, p10001p11111 − p11001p10111, p00001p11001 − p10001p01001,
p00001p10011 − p10001p00011, p00001p10111 − p10001p00111, p00001p01011 − p01001p00011,
p00001p01111 − p01001p00111, p00001p11011 − p00011p11001, p00001p11111 − p11001p00111〉.

Note that no cubics appear in this generating set. However, p00001p11111 −
p11001p00111 and p00001p11001− p10001p01001 do. These are a pair of friendly quadratics,
thus a cubic of particular form must appear in IC, namely a particular cubic with
w = v. We see from a realization of C in Figure 4 that this code is 2-inductively
pierced, even though it does not satisfy the conditions of Theorem 3.5.
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Figure 4: A realization of the code from Example 3.10.

4 Discussion
We have shown sufficient conditions for both 1- and 2-inductively pierced codes.
However, these conditions possess significant weaknesses. Our sufficient condition
for a code to be 1-inductively pierced relies on being able to analyze the entire
toric ideal, a task that becomes unfeasible as for codes on N neurons, for large N .
However, analyzing generating sets of the toric ideal is much easier. If we could
classify all possible ways that a cubic of particular form can be generated, we could
identify whether a cubic of particular form is in the toric ideal simply by looking an
arbitrary generating set. If this were accomplished, Theorem 3.5 and Proposition
3.6 would become much more powerful.

Another direction for future study lies in identify which receptive fields could
potentially form a 2-piercing. In this paper we assumed that we knew which three
place fields were involved in a 2-piercing just from looking at the code. One could
simply check every possible combination of three neurons, but as the number of
neurons increases, this becomes far more difficult.

Further research in identifying which codes are well-formed and realizable in two
dimensions would also be of great benefit. We have made the assumption that the
codes we work with are well-formed and realizable in two dimensions, but as of yet
we are unaware of the existence of any tools to determine these conditions.
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Figure 5: A wombat, which may or may not have place cells, though linguistic
analysis suggests the affirmative.
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