Classification of Unitarizable Representations of B_5

Paul Vienhage

Emory University

July 17th 2017

Paul Vienhage (Emory University)

Representations of B_5

July 17th 2017 1 / 17

A **representation** of dimension *n* is a homomorphism from a group *G* into invertible matrices of size *n*. In notation that is a **representation** is a map $\varphi: G \to GL_n(K)$

• In this project we will be using ${\mathbb C}$ in a low dimension.

A **representation** of dimension *n* is a homomorphism from a group *G* into invertible matrices of size *n*. In notation that is a **representation** is a map $\varphi: G \to GL_n(K)$

- \bullet In this project we will be using ${\mathbb C}$ in a low dimension.
- The representation φ may not be in its simplest form though.

A **representation** of dimension *n* is a homomorphism from a group *G* into invertible matrices of size *n*. In notation that is a **representation** is a map $\varphi : G \to GL_n(K)$

- \bullet In this project we will be using ${\mathbb C}$ in a low dimension.
- The representation φ may not be in its simplest form though.

Definition: G-invariant Subspace

Given a vector space V a subspace of this W is called G-invariant if for all $g \in G$ we have that $\varphi(g)W \subset W$

A **representation** of dimension *n* is a homomorphism from a group *G* into invertible matrices of size *n*. In notation that is a **representation** is a map $\varphi : G \to GL_n(K)$

- \bullet In this project we will be using ${\mathbb C}$ in a low dimension.
- The representation φ may not be in its simplest form though.

Definition: G-invariant Subspace

Given a vector space V a subspace of this W is called G-invariant if for all $g \in G$ we have that $\varphi(g)W \subset W$

Definition: Irreducible Representation

A representation φ is called **irreducible** if the only *G*-invariant subspaces are trivial.

Paul Vienhage (Emory University)

Definition: Unitary Representation

A representation V is said to be unitary if V is equipped with a Hermitian inner product such that for all $g \in G$ we have that $\langle \varphi(g)v|\varphi(g)w\rangle = \langle v|w\rangle$. A representation is called unitarizable if it can be equipped with such a Hermitian inner product.

Definition: Unitary Representation

A representation V is said to be unitary if V is equipped with a Hermitian inner product such that for all $g \in G$ we have that $\langle \varphi(g)v|\varphi(g)w\rangle = \langle v|w\rangle$. A representation is called unitarizable if it can be equipped with such a Hermitian inner product.

- A representation is unitary if it maps each group element to a unitary matrix. Or in finitely generated group if it maps each generators to a unitary matrix.
- We are studying the unitarizable representations of the braid group because these are important to topological quantum computing.

A Detour to Applications

What is a Quantum Computer

A quantum computer is an analogue of a regular computer that manipulates quantum bits. A quantum bit (or qbit) is the fundamental unit of quantum information.

A Detour to Applications

What is a Quantum Computer

A quantum computer is an analogue of a regular computer that manipulates quantum bits. A quantum bit (or qbit) is the fundamental unit of quantum information.

A Detour to Applications

What is a Quantum Computer

A quantum computer is an analogue of a regular computer that manipulates quantum bits. A quantum bit (or qbit) is the fundamental unit of quantum information.

How to Perform Computation in a QC

In a quantum computer the logic gates are unitary transformations of the quantum state of each quibit. So in other words they are unitary matrices.

Paul Vienhage (Emory University)

Representations of B₅

What a TQC is

In a topological quantum computer the quantum state is on two dimensional quantum particles called anayons. A Unitary local representation of the braiding of these anyons allows for computation.

Topological Quantum Computation

What a TQC is

In a topological quantum computer the quantum state is on two dimensional quantum particles called anayons. A Unitary local representation of the braiding of these anyons allows for computation.

Lemma

Let $\langle v|w\rangle_1$ be some Hermitian inner product on \mathbb{C}^n then there exists some A such that $\langle v|w\rangle_1 = \langle v|w\rangle_A = \langle Av|w\rangle$. This matrix A has values $a_{ij} = \langle e_i|e_j\rangle_1$ where e_i and e_j are elements of the standard basis of \mathbb{C}^n .

Lemma

Let $\langle v|w\rangle_1$ be some Hermitian inner product on \mathbb{C}^n then there exists some A such that $\langle v|w\rangle_1 = \langle v|w\rangle_A = \langle Av|w\rangle$. This matrix A has values $a_{ij} = \langle e_i|e_j\rangle_1$ where e_i and e_j are elements of the standard basis of \mathbb{C}^n .

Lemma

Define the adjoint operator * with respect to $\langle \cdot | \cdot \rangle_A$ as $U^* = A^{-1}U^{\dagger}A$ where \dagger is the conjugate transpose. Then we have that $\langle Uv|Uw \rangle_A = \langle v|w \rangle_A$ for all $u, v \in \mathbb{C}^n$ if and only if $UU^* = I$.

Lemma

Let $\langle v|w\rangle_1$ be some Hermitian inner product on \mathbb{C}^n then there exists some A such that $\langle v|w\rangle_1 = \langle v|w\rangle_A = \langle Av|w\rangle$. This matrix A has values $a_{ij} = \langle e_i|e_j\rangle_1$ where e_i and e_j are elements of the standard basis of \mathbb{C}^n .

Lemma

Define the adjoint operator * with respect to $\langle \cdot | \cdot \rangle_A$ as $U^* = A^{-1}U^{\dagger}A$ where \dagger is the conjugate transpose. Then we have that $\langle Uv|Uw \rangle_A = \langle v|w \rangle_A$ for all $u, v \in \mathbb{C}^n$ if and only if $UU^* = I$.

Equivelent Definition

Let (φ, V) be a representation over a complex vector space. Then assume that there is a φ_x such that $\varphi_x(b) = X^{-1}\varphi(b)X$. Then if φ_x is unitary with respect to $\langle u|v\rangle_1$ then φ is unitarizable.

- Informally the braid group can be thought of as a group composed of the crossing of strings where braids which are isotopic are identified.
- A braid on n strands is one with n starting points.

- Informally the braid group can be thought of as a group composed of the crossing of strings where braids which are isotopic are identified.
- A braid on n strands is one with n starting points.

- Informally the braid group can be thought of as a group composed of the crossing of strings where braids which are isotopic are identified.
- A braid on n strands is one with n starting points.

Definition: The Braid group

The braid group B_n is generated by the following $\langle \sigma_1, \sigma_2, \cdots \sigma_{n-1} | \sigma_{i-1}\sigma_i \sigma_{i-1} = \sigma_i \sigma_{i-1}\sigma_i$ and $\sigma_i \sigma_j = \sigma_j \sigma_i$ if $|i-j| \ge 2 \rangle$

Known Representations of B_5

- The Burau representation is a well known representation which is unfortunately never irreducible.
- However the Burau Representation can be decomposed into the reduced Burau Representation and a one dimensional representation.

The (Reduced) Burau Representation

$$\beta(\sigma_1) = \begin{bmatrix} -t & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-3} \end{bmatrix} \beta(\sigma_i) = \begin{bmatrix} I_{i-2} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & t & -t & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & I_{n-i-2} \end{bmatrix}$$

$$\beta(\sigma_{n-1}) = \begin{bmatrix} I_{n-3} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & t & -t \end{bmatrix}$$

Classification of the Representations of B_5

- Previous papers have classified all irreducible representations of *B*₅ of dimension less than five.
- They use representations built using Hecke Algebras denoted μ and $\hat{\mu}$.

Classification of Irreducible Representations by Dimension

They are listed by dimension.

- There is just $\chi(y) : B_5 \to \mathbb{C}$ which is a constant mapping.
- One of the second se
- Solution The irreducible representations are all of the form $\chi(y) \otimes \hat{\beta}(z)$.
- O The irreducible representations are of the form χ(y) ⊗ β(z) and χ(y) ⊗ μ̂(z).
- They are all equivalent to $\chi(y) \otimes \mu(z)$ or a tensor product of the standard representation

Unitarisablity of the Burau Representation

$$P_{n-1} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & s & & \\ \vdots & \ddots & \vdots \\ 0 & \dots & s^{n-1} \end{bmatrix} J_{n-1} = \begin{bmatrix} s+s^{-1} & -1 & \dots & 0 \\ -1 & s+s^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ 0 & \dots & -1 & s^{n-1} \end{bmatrix}$$

Conjugating the Reduced Burau Representation

We have that $\beta(z)_S = P_{n-1}^{-1}\beta(z)P_{n-1}$ is unitary with respect to J_{n-1} as this was proved in a paper Squier.

• This implies that the reduced Burau representation is unitary when $J_{n-1} = X^* X$.

The Standard Representation

Define the representation $s(y): B_n \to (C)^n$. By

$$\sigma_i = \begin{bmatrix} I_{i-1} & & & \\ & 0 & t & \\ & 1 & 0 & \\ & & & I_{n-i-1} \end{bmatrix}$$

Theorem

The Standard Representation is unitarizable if and only if t is on the unit circle.

Proof of the Previous Theorem

We have the following by direct computation

$$egin{aligned} s(t)(\sigma_i)(s(t)(\sigma_i))^\dagger &= egin{bmatrix} I_i & & & \ & tar{t} & & \ & & I_{n-i-1} \end{bmatrix} \end{aligned}$$

Then clearly if t is on the unit circle we have that this is the identity so each matrix mapped to by the generators is unitary. For the other direction there is a considerable about of computation which will be in the appendix of my paper.

Proof of the Previous Theorem

We have the following by direct computation

$$egin{aligned} s(t)(\sigma_i)(s(t)(\sigma_i))^\dagger &= egin{bmatrix} I_i & & & \ & t ar{t} & & \ & & I_{n-i-1} \end{bmatrix} \end{aligned}$$

Then clearly if t is on the unit circle we have that this is the identity so each matrix mapped to by the generators is unitary. For the other direction there is a considerable about of computation which will be in the appendix of my paper.

• This representation is very useful in the classification of the representations of braid groups on *n* strands. In fact Inna Sysoeva proved that for $n \ge 9$ the standard representation is the only irreducible n dimensional representation up to tensor product.

How we approach finding more Unitary Conditions

A Tedious System of Equations

Let the representation $\beta(z)$ be unitary with respect to inner product $\langle \cdot | \cdot \rangle_A$. Since we have that $\varphi(z)(g)\varphi(z)(g)^* = I$ we have the equation $\varphi(z)(g)^{\dagger}A - A\varphi(z)(g)^{-1} = 0$.

How we approach finding more Unitary Conditions

A Tedious System of Equations

Let the representation $\beta(z)$ be unitary with respect to inner product $\langle \cdot | \cdot \rangle_A$. Since we have that $\varphi(z)(g)\varphi(z)(g)^* = I$ we have the equation $\varphi(z)(g)^{\dagger}A - A\varphi(z)(g)^{-1} = 0$.

- Since we have the matrices of the representation we can use this to get a system of equations on the entries of *A*.
- We use the following pseudo code

How we approach finding more Unitary Conditions

A Tedious System of Equations

Let the representation $\beta(z)$ be unitary with respect to inner product $\langle \cdot | \cdot \rangle_A$. Since we have that $\varphi(z)(g)\varphi(z)(g)^* = I$ we have the equation $\varphi(z)(g)^{\dagger}A - A\varphi(z)(g)^{-1} = 0$.

- Since we have the matrices of the representation we can use this to get a system of equations on the entries of *A*.
- We use the following pseudo code

$$\begin{array}{l} A = symbolicMatrix(n) \\ for \ i = 1:4 \\ E1 = B_i'^*A - A^*inv(B_i) == 0 \\ V1 = eqnToMatrix(E1) \\ end \\ V = \begin{bmatrix} V1 & V2 & V3 & V4 \end{bmatrix} \end{array}$$

• Using the code on the previous pages we can get conditions on the unitarity of the remaining representations of B_5

Theorem

The Hecke representations $\mu(z) : B_5 \to \mathbb{C}^5$, $\hat{\mu}(z) : B_5 \to \mathbb{C}^4$, and specialized Burau representation $\hat{\beta}(z) : B_5 \to \mathbb{C}^3$ are never unitarizable.

- These follow from computations to determine conditions on the entries of *A*.
- In each case if the representation were unitarizable this would imply that A has an all zero row, contradicting its inevitability.

• The classification of the irreducible representations of *B*₅ from the literature classifies them up to tensor product.

- The classification of the irreducible representations of B₅ from the literature classifies them up to tensor product.
- Unfortunately it is possible the tensor product to "correct" for an non-unitarizable representation.

- The classification of the irreducible representations of B₅ from the literature classifies them up to tensor product.
- Unfortunately it is possible the tensor product to "correct" for an non-unitarizable representation.

Theorem

Given a representation $\chi(z) : B_5 \to \mathbb{C}^*$ which is defined as $\chi(z)(\sigma_i) = z$. Then $\chi(z) \otimes \varphi$ is unitarizable if and only if there exists an A such that $\langle \varphi(g)v | \varphi(g)w \rangle_A = c \langle v | w \rangle_A$ for all $v, w \in \mathbb{C}^n$ for some positive real c.

- The classification of the irreducible representations of *B*₅ from the literature classifies them up to tensor product.
- Unfortunately it is possible the tensor product to "correct" for an non-unitarizable representation.

Theorem

Given a representation $\chi(z) : B_5 \to \mathbb{C}^*$ which is defined as $\chi(z)(\sigma_i) = z$. Then $\chi(z) \otimes \varphi$ is unitarizable if and only if there exists an A such that $\langle \varphi(g)v | \varphi(g)w \rangle_A = c \langle v | w \rangle_A$ for all $v, w \in \mathbb{C}^n$ for some positive real c.

Proof: If there exists an A such that $\langle \varphi(g)v|\varphi(g)w\rangle_A = c\langle v|w\rangle_A$ for all $v, w \in \mathbb{C}^n$ for some positive real c, then pick your favorite z such that $|z| = \frac{1}{\sqrt{c}}$. Now $\langle \chi \otimes \varphi(g)v|\chi \otimes \varphi(g)w\rangle_A = \langle z * \varphi(g)v|z * \varphi(g)w\rangle_A = |z|^2(c\langle v|w\rangle_A) = \langle v|w\rangle_A$. So assume that $\chi(z) \otimes \varphi$ is unitarizable, then by similar computation $c = \frac{1}{|z|^2}$.

Main Theorem and Future Work

All Unitarizable Low Dimensional Representations of B₅

Listed by dimension:

- **(**) The only irreducible unitary representation is $\chi(z)$ where |z| = 1.
- In such irreducible representations
- O No such irreducible representations
- The only irreducible unitary representation is the Burau type representation $\chi(z) \otimes \beta(t)$ when |z| = 1 and the previously described J_n matrix is positive definite.
- The standard representation $\chi(z) \otimes s(t) : B_5 \to \mathbb{C}^5$ when |t| = 1, |z| = 1 are the only such representations.
 - The classification of all irreducible representations $(d \le n)$ of B_n is complete. We will test the representations of B_n for n = 6, 7, 8. As for $n \ge 9$ the only irreducible representation is the standard.

I would like to thank the National Science Foundation for funding; Julia Plavnik my mentor; Paul Gustafson, Nida Obatake, Ola Sobieska our TAs; Carlos Ortiz Marrero at The Pacific Northwest National Laboratory; and the REU participants for being collaborators and friends.

