Inductively Pierced Codes and Toric Ideals

Samuel Muthiah

Westmont College

July 17, 2017

Samuel Muthiah (Westmont College) Inductively Pierced Codes and Toric Ideals

July 17, 2017 1 / 20

Place Cells

- In 2014 John O'Keefe received the Nobel Prize for his discovery of place cells
- Place cells are part of the way certain mammals' brains identify where there are spatially
- Place cells fire in approximately convex regions

Figure: Place Cells

Definition

A **neural code** on *n* neurons is a set of binary strings $C \subseteq \{0, 1\}^n$. The elements of C are called *codewords*.

 $\mathcal{C} = \{000, 100, 001, 101, 011, 111\}$

Definition

A realization of a code C on n neurons is a collection of sets $\mathcal{U} = \{U_1, \dots, U_n\}$ such that $C(\mathcal{U}) = C$.

A (1) > A (2) > A

Definition

A code C is **convex** if there exists a realization of C by convex sets.

- - E

Definition

The realization of a code $\ensuremath{\mathcal{C}}$ is well-formed if

- Curves intersect at a finite number of points
- At any given point, at most two curves intersect
- Each zone is connected

Need for Algorithms

{000000, 100000, 010000, 001000, 000100, 000010, 110000, 100010, 011000, 010100, 010100, 001100, 000110, 000111, 110010, 011100, 010110}

< (17) > < (17) > <

Need for Algorithms

{000000, 100000, 010000, 001000, 000100, 000010, 110000, 100010, 011000, 010100, 010100, 000110, 000110, 000011, 110010, 011100, 010110}

k-Piercings

Definition

A **k-piercing** is a curve that pierces (intersects) k other curves and that adds 2^k zones when added to an existing diagram.

k-Piercings

Definition

A **k-piercing** is a curve that pierces (intersects) k other curves and that adds 2^k zones when added to an existing diagram.

Figure: Example of a 1-Piercing

Figure: Example of a 2-Piercing

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

k-Inductively Pierced

Definition

A neural code C is **k-inductively pierced** if C has a 0-, 1-, ..., or k- piercing λ and $C - \lambda$ is k-inductively pierced.

< 回 > < 三 > <

k-Inductively Pierced

Definition

A neural code C is **k-inductively pierced** if C has a 0-, 1-, ..., or k- piercing λ and $C - \lambda$ is k-inductively pierced.

► < ∃ ►</p>

Toric Ideals

• Let $C = \{c_1, ..., c_m\}$ be a neural code on n neurons • Let $\phi_c : \mathbb{K}[p_c | c \in C \setminus (0, .., 0)] \to \mathbb{K}[x_i | i \in [n]]$

$$p_c \mapsto \prod_{i \in supp(c)} x_i$$

Toric Ideals

$$p_c \mapsto \prod_{i \in supp(c)} x_i$$

Definition

The toric ideal of the neural code C is $I_C := \ker \phi_c$

$$p_{101}p_{110} - p_{111}p_{100} \mapsto x_1x_3 \cdot x_1x_2 - x_1x_2x_3 \cdot x_1 = 0$$

э

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Theorem (Gross-Obatake-Youngs)

Let \mathcal{C} be well formed.

- The neural code C is 0-inductively pierced if and only if $I_{\mathcal{C}} = \langle 0 \rangle$.
- If the neural code C is 0- or 1- inductively pierced then $I_{\mathcal{C}} = \langle 0 \rangle$ or generated by quadratics.
- If the neural code C has a 2-piercing then I_C contains a binomial of degree 3 of particular form, in particular p_{111w}p²_{000v} − p_{100v}p_{010v}p_{001w} or p_{111w} − p_{100...0}p_{010...0}p_{001w} where v, w are zones in C(U).

Take the code $C = \{0001, 1001, 0101, 0011, 1101, 1011, 0111, 1111\}.$

One set of generators of its toric ideal is:

 $\langle -p_{1011}p_{0111} + p_{0011}p_{1111}, -p_{1101}p_{0111} + p_{0101}p_{1111}, \\ -p_{0101}p_{1011} + p_{1001}p_{0111}, -p_{0011}p_{1101} + p_{1001}p_{0111}, \\ -p_{1011}p_{1011} + p_{1001}p_{1111}, -p_{1001}p_{0101} + p_{0001}p_{1101}, \\ -p_{1001}p_{0011} + p_{0001}p_{1011}, -p_{1001}p_{0111} + p_{0001}p_{1111}, \\ -p_{0101}p_{0011} + p_{0001}p_{0111} \rangle.$

Take the code $C = \{0001, 1001, 0101, 0011, 1101, 1011, 0111, 1111\}.$

Figure: Realization of C

 $\langle -p_{1011}p_{0111} + p_{0011}p_{1111}, -p_{1101}p_{0111} + p_{0101}p_{1111}, -p_{0101}p_{1011} + p_{1001}p_{0111}, -p_{0011}p_{1011} + p_{1001}p_{0111}, -p_{1001}p_{1011} + p_{1001}p_{1111}, -p_{1001}p_{0101} + p_{0001}p_{1101}, -p_{1001}p_{0011} + p_{0001}p_{1011}, -p_{1001}p_{0011} + p_{0001}p_{0111} + p_{0001}p_{0111} + p_{0001}p_{0111} + p_{0001}p_{0111} \rangle$

Constructing Cubics

Constructing Cubics

$$p_{0001}(p_{1111}p_{0001} - p_{1001}p_{0111}) + p_{1001}(p_{0111}p_{0001} - p_{0101}p_{0011}) = p_{1111}p_{0001}^2 - p_{1001}p_{0101}p_{0011}$$

Special Quadratics

 $p_{000v}(p_{111w}p_{000v} - p_{110v}p_{001w}) + p_{001w}(p_{110w}p_{000v} - p_{100v}p_{010v}) \\ p_{000v}(p_{111w}p_{000v} - p_{101v}p_{010w}) + p_{010w}(p_{101w}p_{000v} - p_{100v}p_{001v}) \\ p_{000v}(p_{111w}p_{000v} - p_{011v}p_{100w}) + p_{001w}(p_{011w}p_{000v} - p_{010v}p_{001v}) \\ p_{000v}(p_{111w}p_{000v} - p_{011v}p_{100w}) + p_{001w}(p_{011w}p_{000v} - p_{010v}p_{001v}) \\ p_{000v}(p_{011w}p_{000v} - p_{011v}p_{000v}) + p_{001w}(p_{011w}p_{000v} - p_{010v}p_{001v}) \\ p_{000v}(p_{011w}p_{000v} - p_{010v}p_{001v}) + p_{000v}(p_{011w}p_{000v} - p_{010v}p_{001v}) \\ p_{000v}(p_{011w}p_{000v} - p_{010v}p_{001v}) + p_{000v}(p_{011w}p_{000v} - p_{010v}p_{001v}) \\ p_{000v}(p_{011w}p_{000v} - p_{010v}p_{000v}) + p_{000v}(p_{000v}p_{000v}p_{00v}) + p_{000v}(p_{000v}p_{00v}p_{00v}) + p_{000v}(p_{000v}p_{000v}p_{00v}p_{00v}) + p_{000v}(p_{000v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}) + p_{000v}(p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00v}p_{00$

Special Quadratics

 $p_{000v}(p_{111w}p_{000v} - p_{110v}p_{001w}) + p_{001w}(p_{110w}p_{000v} - p_{100v}p_{010v})$ $p_{000v}(p_{111w}p_{000v} - p_{101v}p_{010w}) + p_{010w}(p_{101w}p_{000v} - p_{100v}p_{001v})$ $p_{000v}(p_{111w}p_{000v} - p_{011v}p_{100w}) + p_{001w}(p_{011w}p_{000v} - p_{010v}p_{001v})$

Sufficient Condition?

Take the code

$\mathcal{C} = \{1000, 0100, 0010, 1100, 1010, 1001, 0110, \\0101, 0011, 1101, 1011, 0111, 1111\}$

 $p_{1111} - p_{1000} p_{0100} p_{0011} \in I_C$

Theorem (Hoch-M.-Obatake)

Let C be a well-formed code, and let I_C be its toric ideal. If there exists a cubic generator of I_C of the form $p_{111w}p_{000v}^2 - p_{100w}p_{010v}p_{001v}$, then $C(U) \setminus \bigcup_{i=4}^m U_i$ is 2-inductively pierced.

Corollary

If $p_{111w}p_{000v}^2 - p_{100w}p_{010v}p_{001v} \in I_C$, then C is not 1-inductively pierced.

3 July 17, 2017 17 / 20

- ∢ ⊒ →

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Samuel Muthiah (Westmont College) Inductively Pierced Codes and Toric Ideals

July 17, 2017 17 / 20

Samuel Muthiah (Westmont College) Inductively Pierced Codes and Toric Ideals

July 17, 2017 17 / 20

Discussion

• Can we classify all possible ways of generating the cubics of a particular form so we can identify a 1-piercing from any generating set of the toric ideal?

Discussion

- Can we classify all possible ways of generating the cubics of a particular form so we can identify a 1-piercing from any generating set of the toric ideal?
- Which codes realizable in 2 dimensions are well-formed?

Discussion

- Can we classify all possible ways of generating the cubics of a particular form so we can identify a 1-piercing from any generating set of the toric ideal?
- Which codes realizable in 2 dimensions are well-formed?
- Can we identify which neurons potentially form a 2-piercing?

Acknowledgments

Special thanks to

- Molly Hoch
- Dr. Anne Shiu
- Nida Obatake
- Ola Sobieska
- Jonathan Tyler
- The National Science Foundation
- Texas A&M University

Thank You!

<ロト <回 > < 回 > < 回 >