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Outline

Today we will...

Review the randomized algorithm for counting mod pk

See some specific examples regarding computational time

Go over the complexity bound of the algorithm

Discuss a bound on the number of roots mod pk
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Factorization

Counting roots in Z/(p)[x ] is easy if you allow randomization, thanks
to the work of Zieler, Berlekamp, and many others, dating back to
the 1960’s.

These methods take advantage of Z/(p)[x ] being a unique
factorization domain.

One simple method: compute the gcd(xp − x , f ) in Z/(p)
By Fermat’s Little Theorem, we know that for a prime p,
xp − x = x(x − 1) · · · (x − (p − 1)) mod p

Z/(pk)[x ] is not a unique factorization domain, so we have to be
more careful when counting in Z/(pk)[x ].

Example: (x + 3)2 = x(x + 6) mod 9.
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Background to Algorithm

Consider the Taylor expansion of a polynomial f ∈ Z[x ] of degree d , where
ζ ∈ Z is a root of the mod p reduction of f and ε ∈ {0, . . . , pk − 1}:

f (ζ + pε) = f (ζ) + f ′(ζ)pε+ · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1 mod pk .

Definition: Let s ∈ {1, . . . , k} be the maximal integer such that ps divides
each of f (ζ), . . . , 1

(k−1)! f
(k−1)(ζ)(pε)k−1.

Lemma (Hensel’s Lemma)

If f ∈ Z[x ] is a polynomial with integer coefficients, p is prime, and
ζJ ∈ {0, . . . , pJ−1 − 1} is a root of f (mod pJ) and f ′(ζJ) 6= 0 (mod p),
then there is a unique ζ ∈ {0, . . . , pJ+1 − 1} with f (ζ) = 0 (mod pJ+1)
and ζ = ζJ (mod pJ).
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Overview of Algorithm

For each root ζ of the mod p reduction of f , we have the following:

By Hensel’s Lemma, we have a single lift (a unique ε) when s = 1.

When s = k , the expression f (ζ) + · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1

vanishes identically mod pk , giving pk−1 lifts.

When s ∈ {2, . . . , k − 1}, we can reapply the algorithm to an instance
of counting roots for the polynomial

fζ(ε) = f (ζ)
ps + f ′(ζ)

ps−1 ε+ · · ·+ f (k−1)(ζ)
(k−1)!ps−(k−1) ε

k−1 in Z/(pk−s).
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Illustration of Complexity Bound

𝑓

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3

ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4
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Illustration of Complexity Bound

𝑓Non-degenerate 
root: ζ0 = 0

ζ1 = 1:
𝑓ζ1(𝜀)

1

𝑝3
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Ideas Behind Proof of Complexity Bound

We use Kedlaya-Umans fast Z/(p)[x ] factoring algorithm, which takes
time d1.5+o(1)(log p)1+o(1) + d1+o(1)(log p)2+o(1) for a degree d
polynomial.

To simplify, the complexity is less than or equal to (the number of
nodes in the recursion tree)(the complexity of factoring over
(Z/(p))[x ]).

The depth and branching of our recurrence tree is strongly limited by
the value of k .

Optimizing parameters, the worst case is when d ≈ e ≈ 2.71828 and
the depth is k

e .
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Complexity Bound

The randomized algorithm counts the number of roots in time
d1.5+o(1)(log p)2+o(1)(1.12)k .

This complexity bound refers to counting roots, not to finding/storing
them; we can have over bdk cp

k−1 roots, so we cannot achieve this
same time bound if we store every single root.

Example: The polynomial f (x) = (x − 2)7(x − 1)3 with p = 17, k = 7 has
24, 221, 090 roots (this is greater than bdk cp

k−1 = 24, 137, 569).
Computing this number of roots took .004 seconds, but storing and listing
them all would take much longer.
(Counting the number of roots using brute force took 39 minutes).
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Comparing Methods

The randomized algorithm counts the number of roots in time
d1.5+o(1)(log p)2+o(1)(1.12)k .

In comparison, brute force counting takes time ≈ pk .

We expect the randomized algorithm to be faster even for p as small
as 2 (1.12k vs. 2k).
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Data for p = 2

The table below shows the average difference in computation time for the
number of roots of 100 random polynomials of degree less than or equal to
100 in Z/(2k) for the given k, between brute force and the randomized
algorithm (negative implies brute force was faster):

k 8 9 10 11 15

Avg Diff (in seconds) -0.0011 -0.00029 0.0028 0.01701 0.32499
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Timing Data

We expect the randomized algorithm to take the longest when a
polynomial has many degenerate roots because a polynomial of this
type will require many recursive calls.

Polynomials with many degenerate roots do take longer than a
random polynomial, but overall the randomized algorithm still
outperforms other methods.

Example: Counting roots of f (x) = (x − 1)(x − 2)2 · · · (x − 10)10 in
Z/(3110) took 6.4 seconds using the randomized algorithm.

For comparison, a random polynomial of the same degree (55) took 1
millisecond with the randomized algorithm, and counting roots using
brute force for just 316 took 2.7 hours.
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Example with Large Number of Roots

The number of roots of a polynomial in Z/(pk) can be very large,
especially for polynomials with many degenerate roots modp.

Example: (x − 2)50 has 5132842958629010337866366828195 (31 digit
number) roots in Z/(2529).

But we do have an upper bound on the number of roots based on the sizes
of k , p and d .

Leann Kopp July 16, 2018 11 / 16
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Steps Toward a Bound on the Number of Roots

Lemma

If a root ζ of the mod p reduction of f has multiplicity j , then sζ ≤ j ,
where sζ is the greatest integer such that psζ divides each of

f (ζ), . . . , f
(k−1)(ζ)
(k−1)! pk−1εk−1.

Proof: If ζ has multiplicity j , then f (ζ) = · · · = f j−1(ζ) = 0 (mod p), but

f (j)(ζ) 6= 0 (mod p). So f j (ζ)
j! pj is divisible by pj but not pj+1 and

therefore sζ ≤ j .

This is important because it tells us that we can have at most bds c roots of
f mod p for each s.
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Bound on the Number of Roots

Theorem

Let p be a prime, f ∈ Z[x ] a polynomial of degree d , and k ∈ N such that
d ≥ k ≥ 2. Then the number of roots of f in Z/(pk) is less than or equal
to min{d , p}pk−1.

We know there are polynomials with more than min{bdk c, p}p
k−1 roots in

Z/(pk), so our bound is within a factor of k of optimality.
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Root Bound Examples

Polynomials with d ≥ p having pk roots in Z/(pk):

1 f (x) = (xp − x)k is a polynomial of degree pk with pk roots in
Z/(pk).

2 g(x) = (xp
k−pk−1 − 1)xk has degree pk − pk−1 + k and also vanishes

on all of Z/(pk).
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Sharp Bound for k = 2

When k = 2, there are a maximum of min{bd2 c, p}p + (d mod k) roots in
Z/(p2).

This upper bound is sharp. For example, the with p = 5 the degree 3
polynomial (x − 1)2x has b32c · 5 + (3 mod 2) = 6 roots in Z/(p2).
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Conclusions

We have a Las Vegas randomized algorithm for counting the number
of roots of a degree d polynomial f ∈ Z[x ] in Z/(pk).

The complexity of the randomized algorithm is given by O(1.12k).

We see time improvements for computations using the randomized
algorithm over brute-force counting even for p = 2.

An upper bound on the number of roots is min{d , p}pk−1, and a
sharp upper bound for k = 2 is given by min{bd2 c, p}p + (d mod k).
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