
A Faster Randomized Algorithm for Counting Roots in
Z/(pk)

Leann Kopp

Department of Mathematics,
Texas A&M University
NSF DMS – 1757872

July 16, 2018

Leann Kopp July 16, 2018 1 / 16



Outline

Today we will...

Review the randomized algorithm for counting mod pk

See some specific examples regarding computational time

Go over the complexity bound of the algorithm

Discuss a bound on the number of roots mod pk

Leann Kopp July 16, 2018 2 / 16



Factorization

Counting roots in Z/(p)[x ] is easy if you allow randomization, thanks
to the work of Zieler, Berlekamp, and many others, dating back to
the 1960’s.

These methods take advantage of Z/(p)[x ] being a unique
factorization domain.

One simple method: compute the gcd(xp − x , f ) in Z/(p)
By Fermat’s Little Theorem, we know that for a prime p,
xp − x = x(x − 1) · · · (x − (p − 1)) mod p

Z/(pk)[x ] is not a unique factorization domain, so we have to be
more careful when counting in Z/(pk)[x ].

Example: (x + 3)2 = x(x + 6) mod 9.

Leann Kopp July 16, 2018 3 / 16



Factorization

Counting roots in Z/(p)[x ] is easy if you allow randomization, thanks
to the work of Zieler, Berlekamp, and many others, dating back to
the 1960’s.

These methods take advantage of Z/(p)[x ] being a unique
factorization domain.

One simple method: compute the gcd(xp − x , f ) in Z/(p)
By Fermat’s Little Theorem, we know that for a prime p,
xp − x = x(x − 1) · · · (x − (p − 1)) mod p

Z/(pk)[x ] is not a unique factorization domain, so we have to be
more careful when counting in Z/(pk)[x ].

Example: (x + 3)2 = x(x + 6) mod 9.

Leann Kopp July 16, 2018 3 / 16



Factorization

Counting roots in Z/(p)[x ] is easy if you allow randomization, thanks
to the work of Zieler, Berlekamp, and many others, dating back to
the 1960’s.

These methods take advantage of Z/(p)[x ] being a unique
factorization domain.

One simple method: compute the gcd(xp − x , f ) in Z/(p)
By Fermat’s Little Theorem, we know that for a prime p,
xp − x = x(x − 1) · · · (x − (p − 1)) mod p

Z/(pk)[x ] is not a unique factorization domain, so we have to be
more careful when counting in Z/(pk)[x ].

Example: (x + 3)2 = x(x + 6) mod 9.

Leann Kopp July 16, 2018 3 / 16



Factorization

Counting roots in Z/(p)[x ] is easy if you allow randomization, thanks
to the work of Zieler, Berlekamp, and many others, dating back to
the 1960’s.

These methods take advantage of Z/(p)[x ] being a unique
factorization domain.

One simple method: compute the gcd(xp − x , f ) in Z/(p)
By Fermat’s Little Theorem, we know that for a prime p,
xp − x = x(x − 1) · · · (x − (p − 1)) mod p

Z/(pk)[x ] is not a unique factorization domain, so we have to be
more careful when counting in Z/(pk)[x ].

Example: (x + 3)2 = x(x + 6) mod 9.

Leann Kopp July 16, 2018 3 / 16



Background to Algorithm

Consider the Taylor expansion of a polynomial f ∈ Z[x ] of degree d , where
ζ ∈ Z is a root of the mod p reduction of f and ε ∈ {0, . . . , pk − 1}:

f (ζ + pε) = f (ζ) + f ′(ζ)pε+ · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1 mod pk .

Definition: Let s ∈ {1, . . . , k} be the maximal integer such that ps divides
each of f (ζ), . . . , 1

(k−1)! f
(k−1)(ζ)(pε)k−1.

Lemma (Hensel’s Lemma)

If f ∈ Z[x ] is a polynomial with integer coefficients, p is prime, and
ζJ ∈ {0, . . . , pJ−1 − 1} is a root of f (mod pJ) and f ′(ζJ) 6= 0 (mod p),
then there is a unique ζ ∈ {0, . . . , pJ+1 − 1} with f (ζ) = 0 (mod pJ+1)
and ζ = ζJ (mod pJ).

Leann Kopp July 16, 2018 4 / 16



Background to Algorithm

Consider the Taylor expansion of a polynomial f ∈ Z[x ] of degree d , where
ζ ∈ Z is a root of the mod p reduction of f and ε ∈ {0, . . . , pk − 1}:

f (ζ + pε) = f (ζ) + f ′(ζ)pε+ · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1 mod pk .

Definition: Let s ∈ {1, . . . , k} be the maximal integer such that ps divides
each of f (ζ), . . . , 1

(k−1)! f
(k−1)(ζ)(pε)k−1.

Lemma (Hensel’s Lemma)

If f ∈ Z[x ] is a polynomial with integer coefficients, p is prime, and
ζJ ∈ {0, . . . , pJ−1 − 1} is a root of f (mod pJ) and f ′(ζJ) 6= 0 (mod p),
then there is a unique ζ ∈ {0, . . . , pJ+1 − 1} with f (ζ) = 0 (mod pJ+1)
and ζ = ζJ (mod pJ).

Leann Kopp July 16, 2018 4 / 16



Background to Algorithm

Consider the Taylor expansion of a polynomial f ∈ Z[x ] of degree d , where
ζ ∈ Z is a root of the mod p reduction of f and ε ∈ {0, . . . , pk − 1}:

f (ζ + pε) = f (ζ) + f ′(ζ)pε+ · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1 mod pk .

Definition: Let s ∈ {1, . . . , k} be the maximal integer such that ps divides
each of f (ζ), . . . , 1

(k−1)! f
(k−1)(ζ)(pε)k−1.

Lemma (Hensel’s Lemma)

If f ∈ Z[x ] is a polynomial with integer coefficients, p is prime, and
ζJ ∈ {0, . . . , pJ−1 − 1} is a root of f (mod pJ) and f ′(ζJ) 6= 0 (mod p),
then there is a unique ζ ∈ {0, . . . , pJ+1 − 1} with f (ζ) = 0 (mod pJ+1)
and ζ = ζJ (mod pJ).

Leann Kopp July 16, 2018 4 / 16



Overview of Algorithm

For each root ζ of the mod p reduction of f , we have the following:

By Hensel’s Lemma, we have a single lift (a unique ε) when s = 1.

When s = k , the expression f (ζ) + · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1

vanishes identically mod pk , giving pk−1 lifts.

When s ∈ {2, . . . , k − 1}, we can reapply the algorithm to an instance
of counting roots for the polynomial

fζ(ε) = f (ζ)
ps + f ′(ζ)

ps−1 ε+ · · ·+ f (k−1)(ζ)
(k−1)!ps−(k−1) ε

k−1 in Z/(pk−s).

Leann Kopp July 16, 2018 5 / 16



Overview of Algorithm

For each root ζ of the mod p reduction of f , we have the following:

By Hensel’s Lemma, we have a single lift (a unique ε) when s = 1.

When s = k , the expression f (ζ) + · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1

vanishes identically mod pk , giving pk−1 lifts.

When s ∈ {2, . . . , k − 1}, we can reapply the algorithm to an instance
of counting roots for the polynomial

fζ(ε) = f (ζ)
ps + f ′(ζ)

ps−1 ε+ · · ·+ f (k−1)(ζ)
(k−1)!ps−(k−1) ε

k−1 in Z/(pk−s).

Leann Kopp July 16, 2018 5 / 16



Overview of Algorithm

For each root ζ of the mod p reduction of f , we have the following:

By Hensel’s Lemma, we have a single lift (a unique ε) when s = 1.

When s = k , the expression f (ζ) + · · ·+ 1
(k−1)! f

(k−1)(ζ)(pε)k−1

vanishes identically mod pk , giving pk−1 lifts.

When s ∈ {2, . . . , k − 1}, we can reapply the algorithm to an instance
of counting roots for the polynomial

fζ(ε) = f (ζ)
ps + f ′(ζ)

ps−1 ε+ · · ·+ f (k−1)(ζ)
(k−1)!ps−(k−1) ε

k−1 in Z/(pk−s).

Leann Kopp July 16, 2018 5 / 16



Illustration of Complexity Bound

𝑓

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3

ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4

Leann Kopp July 16, 2018 5 / 16



Illustration of Complexity Bound

𝑓

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3
ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4

Leann Kopp July 16, 2018 5 / 16



Illustration of Complexity Bound

𝑓Non-degenerate 
root: ζ0 = 0

ζ1 = 1:
𝑓ζ1(𝜀)

1

𝑝3

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3
ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4

fζ1(ε) = x3 + 2x2 mod 3, k = 3
ζ2 = 1 with s(2, 1) = 1
ζ3 = 0 with s(3, 1) = 2

Leann Kopp July 16, 2018 5 / 16



Illustration of Complexity Bound

𝑓Non-degenerate 
root: ζ0 = 0

ζ1 = 1:
𝑓ζ1(𝜀)

1

𝑝3

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3
ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4

fζ1(ε) = x3 + 2x2 mod 3, k = 3
ζ2 = 1 with s(2, 1) = 1
ζ3 = 0 with s(3, 1) = 2

Leann Kopp July 16, 2018 5 / 16



Illustration of Complexity Bound

𝑓Non-degenerate 
root: ζ0 = 0

Non-degenerate 
root: ζ2 = 1

ζ1 = 1:
𝑓ζ1(𝜀)

ζ3 = 0:
𝑓ζ3(𝜀)

1

1

𝑝3

𝑝

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3
ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4

fζ1(ε) = x3 + 2x2 mod 3, k = 3
ζ2 = 1 with s(2, 1) = 1
ζ3 = 0 with s(3, 0) = 2

fζ3(ε) = 2x2 + 1 mod 3, k = 1
ζ4 = 1 with s(4, 1) = 1
ζ5 = 2 with s(5, 2) = 1.

Leann Kopp July 16, 2018 5 / 16



Illustration of Complexity Bound

𝑓Non-degenerate 
root: ζ0 = 0

Non-degenerate 
root: ζ2 = 1

ζ1 = 1:
𝑓ζ1(𝜀)

ζ3 = 0:
𝑓ζ3(𝜀)

1

1

𝑝3

𝑝

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3
ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4

fζ1(ε) = x3 + 2x2 mod 3, k = 3
ζ2 = 1 with s(2, 1) = 1
ζ3 = 0 with s(3, 0) = 2

fζ3(ε) = 2x2 + 1 mod 3, k = 1
ζ4 = 1 with s(4, 1) = 1
ζ5 = 2 with s(5, 2) = 1.

Leann Kopp July 16, 2018 5 / 16



Illustration of Complexity Bound

𝑓Non-degenerate 
root: ζ0 = 0

Non-degenerate 
root: ζ2 = 1

ζ1 = 1:
𝑓ζ1(𝜀)

ζ3 = 0:
𝑓ζ3(𝜀)

Non-degenerate 
root: ζ4 = 1

Non-degenerate 
root: ζ5 = 2

1

1

𝑝3

𝑝

With p = 3, k = 7:

f (x) = x10 − 10x + 738
f (x) = x(x + 2)9 mod 3
ζ0 = 0 with s(0, 0) = 1
ζ1 = 1 with s(1, 1) = 4

fζ1(ε) = x3 + 2x2 mod 3, k = 3
ζ2 = 1 with s(2, 1) = 1
ζ3 = 0 with s(3, 0) = 2

fζ3(ε) = 2x2 + 1 mod 3, k = 1
ζ4 = 1 with s(4, 1) = 1
ζ5 = 2 with s(5, 2) = 1.

Leann Kopp July 16, 2018 5 / 16



Ideas Behind Proof of Complexity Bound

We use Kedlaya-Umans fast Z/(p)[x ] factoring algorithm, which takes
time d1.5+o(1)(log p)1+o(1) + d1+o(1)(log p)2+o(1) for a degree d
polynomial.

To simplify, the complexity is less than or equal to (the number of
nodes in the recursion tree)(the complexity of factoring over
(Z/(p))[x ]).

The depth and branching of our recurrence tree is strongly limited by
the value of k .

Optimizing parameters, the worst case is when d ≈ e ≈ 2.71828 and
the depth is k

e .

Leann Kopp July 16, 2018 6 / 16



Ideas Behind Proof of Complexity Bound

We use Kedlaya-Umans fast Z/(p)[x ] factoring algorithm, which takes
time d1.5+o(1)(log p)1+o(1) + d1+o(1)(log p)2+o(1) for a degree d
polynomial.

To simplify, the complexity is less than or equal to (the number of
nodes in the recursion tree)(the complexity of factoring over
(Z/(p))[x ]).

The depth and branching of our recurrence tree is strongly limited by
the value of k .

Optimizing parameters, the worst case is when d ≈ e ≈ 2.71828 and
the depth is k

e .

Leann Kopp July 16, 2018 6 / 16



Ideas Behind Proof of Complexity Bound

We use Kedlaya-Umans fast Z/(p)[x ] factoring algorithm, which takes
time d1.5+o(1)(log p)1+o(1) + d1+o(1)(log p)2+o(1) for a degree d
polynomial.

To simplify, the complexity is less than or equal to (the number of
nodes in the recursion tree)(the complexity of factoring over
(Z/(p))[x ]).

The depth and branching of our recurrence tree is strongly limited by
the value of k .

Optimizing parameters, the worst case is when d ≈ e ≈ 2.71828 and
the depth is k

e .

Leann Kopp July 16, 2018 6 / 16



Complexity Bound

The randomized algorithm counts the number of roots in time
d1.5+o(1)(log p)2+o(1)(1.12)k .

This complexity bound refers to counting roots, not to finding/storing
them; we can have over bdk cp

k−1 roots, so we cannot achieve this
same time bound if we store every single root.

Example: The polynomial f (x) = (x − 2)7(x − 1)3 with p = 17, k = 7 has
24, 221, 090 roots (this is greater than bdk cp

k−1 = 24, 137, 569).
Computing this number of roots took .004 seconds, but storing and listing
them all would take much longer.
(Counting the number of roots using brute force took 39 minutes).

Leann Kopp July 16, 2018 7 / 16



Complexity Bound

The randomized algorithm counts the number of roots in time
d1.5+o(1)(log p)2+o(1)(1.12)k .

This complexity bound refers to counting roots, not to finding/storing
them; we can have over bdk cp

k−1 roots, so we cannot achieve this
same time bound if we store every single root.

Example: The polynomial f (x) = (x − 2)7(x − 1)3 with p = 17, k = 7 has
24, 221, 090 roots (this is greater than bdk cp

k−1 = 24, 137, 569).
Computing this number of roots took .004 seconds, but storing and listing
them all would take much longer.
(Counting the number of roots using brute force took 39 minutes).

Leann Kopp July 16, 2018 7 / 16



Complexity Bound

The randomized algorithm counts the number of roots in time
d1.5+o(1)(log p)2+o(1)(1.12)k .

This complexity bound refers to counting roots, not to finding/storing
them; we can have over bdk cp

k−1 roots, so we cannot achieve this
same time bound if we store every single root.

Example: The polynomial f (x) = (x − 2)7(x − 1)3 with p = 17, k = 7 has
24, 221, 090 roots (this is greater than bdk cp

k−1 = 24, 137, 569).
Computing this number of roots took .004 seconds, but storing and listing
them all would take much longer.

(Counting the number of roots using brute force took 39 minutes).

Leann Kopp July 16, 2018 7 / 16



Complexity Bound

The randomized algorithm counts the number of roots in time
d1.5+o(1)(log p)2+o(1)(1.12)k .

This complexity bound refers to counting roots, not to finding/storing
them; we can have over bdk cp

k−1 roots, so we cannot achieve this
same time bound if we store every single root.

Example: The polynomial f (x) = (x − 2)7(x − 1)3 with p = 17, k = 7 has
24, 221, 090 roots (this is greater than bdk cp

k−1 = 24, 137, 569).
Computing this number of roots took .004 seconds, but storing and listing
them all would take much longer.
(Counting the number of roots using brute force took 39 minutes).

Leann Kopp July 16, 2018 7 / 16



Comparing Methods

The randomized algorithm counts the number of roots in time
d1.5+o(1)(log p)2+o(1)(1.12)k .

In comparison, brute force counting takes time ≈ pk .

We expect the randomized algorithm to be faster even for p as small
as 2 (1.12k vs. 2k).

Leann Kopp July 16, 2018 8 / 16



Data for p = 2

The table below shows the average difference in computation time for the
number of roots of 100 random polynomials of degree less than or equal to
100 in Z/(2k) for the given k, between brute force and the randomized
algorithm (negative implies brute force was faster):

k 8 9 10 11 15

Avg Diff (in seconds) -0.0011 -0.00029 0.0028 0.01701 0.32499

Leann Kopp July 16, 2018 9 / 16



Timing Data

We expect the randomized algorithm to take the longest when a
polynomial has many degenerate roots because a polynomial of this
type will require many recursive calls.

Polynomials with many degenerate roots do take longer than a
random polynomial, but overall the randomized algorithm still
outperforms other methods.

Example: Counting roots of f (x) = (x − 1)(x − 2)2 · · · (x − 10)10 in
Z/(3110) took 6.4 seconds using the randomized algorithm.

For comparison, a random polynomial of the same degree (55) took 1
millisecond with the randomized algorithm, and counting roots using
brute force for just 316 took 2.7 hours.

Leann Kopp July 16, 2018 10 / 16



Timing Data

We expect the randomized algorithm to take the longest when a
polynomial has many degenerate roots because a polynomial of this
type will require many recursive calls.

Polynomials with many degenerate roots do take longer than a
random polynomial, but overall the randomized algorithm still
outperforms other methods.

Example: Counting roots of f (x) = (x − 1)(x − 2)2 · · · (x − 10)10 in
Z/(3110) took 6.4 seconds using the randomized algorithm.

For comparison, a random polynomial of the same degree (55) took 1
millisecond with the randomized algorithm, and counting roots using
brute force for just 316 took 2.7 hours.

Leann Kopp July 16, 2018 10 / 16



Example with Large Number of Roots

The number of roots of a polynomial in Z/(pk) can be very large,
especially for polynomials with many degenerate roots modp.

Example: (x − 2)50 has 5132842958629010337866366828195 (31 digit
number) roots in Z/(2529).

But we do have an upper bound on the number of roots based on the sizes
of k , p and d .

Leann Kopp July 16, 2018 11 / 16



Example with Large Number of Roots

The number of roots of a polynomial in Z/(pk) can be very large,
especially for polynomials with many degenerate roots modp.

Example: (x − 2)50 has 5132842958629010337866366828195 (31 digit
number) roots in Z/(2529).

But we do have an upper bound on the number of roots based on the sizes
of k , p and d .

Leann Kopp July 16, 2018 11 / 16



Steps Toward a Bound on the Number of Roots

Lemma

If a root ζ of the mod p reduction of f has multiplicity j , then sζ ≤ j ,
where sζ is the greatest integer such that psζ divides each of

f (ζ), . . . , f
(k−1)(ζ)
(k−1)! pk−1εk−1.

Proof: If ζ has multiplicity j , then f (ζ) = · · · = f j−1(ζ) = 0 (mod p), but

f (j)(ζ) 6= 0 (mod p). So f j (ζ)
j! pj is divisible by pj but not pj+1 and

therefore sζ ≤ j .

This is important because it tells us that we can have at most bds c roots of
f mod p for each s.

Leann Kopp July 16, 2018 12 / 16



Steps Toward a Bound on the Number of Roots

Lemma

If a root ζ of the mod p reduction of f has multiplicity j , then sζ ≤ j ,
where sζ is the greatest integer such that psζ divides each of

f (ζ), . . . , f
(k−1)(ζ)
(k−1)! pk−1εk−1.

Proof: If ζ has multiplicity j , then f (ζ) = · · · = f j−1(ζ) = 0 (mod p), but

f (j)(ζ) 6= 0 (mod p). So f j (ζ)
j! pj is divisible by pj but not pj+1 and

therefore sζ ≤ j .

This is important because it tells us that we can have at most bds c roots of
f mod p for each s.

Leann Kopp July 16, 2018 12 / 16



Bound on the Number of Roots

Theorem

Let p be a prime, f ∈ Z[x ] a polynomial of degree d , and k ∈ N such that
d ≥ k ≥ 2. Then the number of roots of f in Z/(pk) is less than or equal
to min{d , p}pk−1.

We know there are polynomials with more than min{bdk c, p}p
k−1 roots in

Z/(pk), so our bound is within a factor of k of optimality.

Leann Kopp July 16, 2018 13 / 16



Bound on the Number of Roots

Theorem

Let p be a prime, f ∈ Z[x ] a polynomial of degree d , and k ∈ N such that
d ≥ k ≥ 2. Then the number of roots of f in Z/(pk) is less than or equal
to min{d , p}pk−1.

We know there are polynomials with more than min{bdk c, p}p
k−1 roots in

Z/(pk), so our bound is within a factor of k of optimality.

Leann Kopp July 16, 2018 13 / 16



Root Bound Examples

Polynomials with d ≥ p having pk roots in Z/(pk):

1 f (x) = (xp − x)k is a polynomial of degree pk with pk roots in
Z/(pk).

2 g(x) = (xp
k−pk−1 − 1)xk has degree pk − pk−1 + k and also vanishes

on all of Z/(pk).

Leann Kopp July 16, 2018 14 / 16



Root Bound Examples

Polynomials with d ≥ p having pk roots in Z/(pk):

1 f (x) = (xp − x)k is a polynomial of degree pk with pk roots in
Z/(pk).

2 g(x) = (xp
k−pk−1 − 1)xk has degree pk − pk−1 + k and also vanishes

on all of Z/(pk).

Leann Kopp July 16, 2018 14 / 16



Sharp Bound for k = 2

When k = 2, there are a maximum of min{bd2 c, p}p + (d mod k) roots in
Z/(p2).

This upper bound is sharp. For example, the with p = 5 the degree 3
polynomial (x − 1)2x has b32c · 5 + (3 mod 2) = 6 roots in Z/(p2).

Leann Kopp July 16, 2018 15 / 16



Conclusions

We have a Las Vegas randomized algorithm for counting the number
of roots of a degree d polynomial f ∈ Z[x ] in Z/(pk).

The complexity of the randomized algorithm is given by O(1.12k).

We see time improvements for computations using the randomized
algorithm over brute-force counting even for p = 2.

An upper bound on the number of roots is min{d , p}pk−1, and a
sharp upper bound for k = 2 is given by min{bd2 c, p}p + (d mod k).

Leann Kopp July 16, 2018 16 / 16


