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Automorphic Forms

A function f :H — C is an automorphic form if
1. f obeys some transformation property.
e f (gjj_g) = (cz + d)F f(2)

2. f satisfies a certain differential equation
(complex analytic, harmonic functions, ... ).

3. f exhibits some boundary behavior.

(polynomial growth, boundedness as function approaches
100, ... )
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For k > 4 and k even, the weight-k FEisenstein Series is

1 1
Ble)=3 2. rap

ged(e,d)=1

For all v = (CCL Z) € SLy(7),

Ey,(vz) = (cz + d)* By (2).
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Dirichlet Characters

A Dirichlet character x (mod q) is a function x : Z — C with
the following properties:

. x(n+ql)=x(n)Vn,leZ

2. x(n) =0 iff ged(n,q) # 1
3. x(mn)=x(m)x(n) VmmneZ

Example: Jacobi/Legendre Symbols
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Periodicity of £, ,,

1 1
Let T = (0 1> < Fo(Q1QQ).
Then s+ 1
Tz = - =z 41,

0z +1

SO

Eryi xo (Z + 1, S) = (OZ - 1)kX1(1)X_2(1)EX1,X2 (Za 3)

By xs(2,8).

Thus, Ey, y, is periodic.
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Fourier Expansion for the Completed Eisenstein Series

Define the completed Eisenstein series as

B}, o (2,8) 1= 105 (s 4+ £)L(28, X1x2) By o (2, 9)

The Fourier expansion for the completed Eisenstein series is

A : :
E* (Z,S) _ 6;17X2(y’8) + Z X1,X2(n 8) eanx

X1,X2 o \/’7’7‘
I'(s+ %)
['(s+ gsgn(n))

W% 4m|nly).

sgn(n),s—%(
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Evaluating Ey | (z,5) at k=0 and s =1

e27rznz

E;hxz(z’l) - Z ZXl(a)XQ(b)
NG
n>0 ab=n

fx1.x2 (%)

—2minz

Saxa2)

We have been investigating the function fy, ..
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Transformation Properties of f,, y,(2)

Define
¢X1,X2 (77 Z) = le,XQ (72) o ¢(7)fx1,x2 (Z)

Main Goal. Find a finite sum formula for ¢, ,,.
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Lemma 1. The function ¢y, ., 15 independent of z.

Proof. Since £}, ., (vz,1) = ¥(y)E5, ,,(2,1) and

E;1,X2( 1) = le,Xz(Z) + x2(—1 )fxl,XQ(z)a

¢X1,X2 (’77 Z) — _XQ(_1)¢E;E(’7> Z)

Since ¢y, v, 1S a holomorphic function and ¢5; 35 is an
antiholomorphic function, ¢,, ,, must be constant. [

» From now on, we will write ¢,, v, () instead of ¢y, v, (7, 2).
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Properties of ¢, y,

Lemma 2. Let v1,7v2 € T'o(qig2). Then

Dy x2(1172) = Dxqx2 (V1) + U (71) Dyt x2 (12) -

Proof. Since 1 is multiplicative,

Dx1x2(1172) = Fraa (11722) — ¥ (1172) fra x2 (2)

= fxixe(11722) = Y (71)Y (72) fxa x2 (%)

= fxina(Mm722) = V(1) Fxaxe (122)
+ P (71) fxax2 (122) — V(1) (12) fxaxe (2)
)

= ®x1,x0 (1) +¥(n Px1,x2 (72). [



Main Theorem

Theorem. Let v = <ﬁ Z) € I'o(q1q2). Then

bons) = 2D S S s (2) 5 (2 -2,

T(E) j (mod ¢) n (mod q¢1) 7

where
— Z— LZJ - %7 2 §é Z
Bu(z) = { 0, otherwise,
and
q—1 ,
() =) x(n)e
n=0

for x modulo q.
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Carnival Funhouse Proof of Main Theorem

c2

Let v = (CCL 2) € I'o(q1g2). Choose z = _Td + -+ ¢ H for some
u € R, u## 0. Then vz = £ + iu.

—d -
a7 = I ( P (% —l—iu) — (V) fxaxe < + ’ ))

Thus,
. a .
¢X1,X2 (7) = lim le,XQ (E + ’LU) .

u—0t
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Carnival Funhouse Proof of Main Theorem

le,X2 (Z) _ i i Xl(l)lX_Q(k) p2miklz

k=1 1=1

Simplifying fy, v, and evaluating lim, .o+ fy; o (% -+ iu), we
get

G [ ' —2mialj
b =D A S mm (1)
=1 j (mod c)



Carnival Funhouse Proof of Main Theorem

From the transformation properties of EY  , we have

bras(1) = 5 (00 (1) — oLz (1)

We simplify this more symmetric version of ¢, ,, to get

i (1) = _mX2 Vs Y wum (%) B (ﬁ _ %) .

j (mod ¢) n (mod q1)
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» We found a “natural” proof for the generalized Dedekind
sum formula with Dirichlet characters.

» We began with a nicer version of the Eisenstein series.

» We calculated the generalized Dedekind sum directly from
the Fourier expansion of the Eisenstein series.

» With more time, we would like to calculate a reciprocity
theorem for our generalized Dedekind sum.

12hks(h, k) + 12khs(k,h) = h*> + k* — 3hk + 1
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