
Geometry of R Roots of 9× 9 Polynomial Systems

Lacey Eagan & Luis Feliciano

July 17, 2018

Abstract

Chemical reactions are constantly taking place within every single animal and plant
cell, and these reactions can be modeled by Chemical Reaction Networks. The particular
chemical reaction that we chose to study through Chemical Reaction Networks is Phos-
phorylation. After modeling Phosphorylation, we use Mass Action Kinetics to derive nine
reaction rate equations with nine unknowns which we can then solve to find the equilibria
of our Chemical Reaction Network. We are interested in the equilibria because we would
like to see when they take place and under what conditions. After reducing our 9 × 9
system to a much simpler 2 × 2 system, we apply A-Discriminants to obtain a better
idea of what our roots will look like. Discriminant Varieties divide the coefficient space
into regions where the underlying number of real roots is constant, and we use Linear
Programming to see which coefficient sign vectors yield simpler root counting. Solving
for the real roots of polynomial systems becomes more challenging as we add more terms
and variables. However, we can use convex geometry to find metric estimates of real
roots in a fraction of the time! Here we will develop some of the tools necessary to build
up to our main tool the Archimedean Tropical Variety, a piece-wise linear construction
guaranteed to be close to our complex zero set, and a signed variant that has the same
isotopy type as the positive zero set with high probability. We will show the results of
applying these constructions to a family of 9×9 polynomial systems arising from chemical
reaction networks.

1 Introduction

2 Preliminary Information

In order to get the 9 × 9 system of equations that we worked with, we must first discuss the
biology behind this process.

2.1 Phosphorylation

Chemical reactions take place within every single cell of any living being; in other words, every
plant and animal. The chemical reaction we chose to model is Phosphorylation.

Definition 2.1. Phosphorylation is the enzyme-mediated edition of a phosphate group to a
protein substrate.

Within the cell, there are many different organelles. Within the Ribosome, protein are
made from chains of Amino Acid. These proteins then make up the DNA and RNA of the cell
which control most major functions. Phosphorylation then activates, or deactivates, certain
functions of the cell by adding, or subtracting, phosphate groups to the Protein Substrate. The

1

proteins particularly being used in our case are Kinase, Phosphatase, and Protein Substrate.
These each have their own specific functions within Phosphorylation. Kinase has the function
of starting Phosphorylation while Phosphatase has the function of starting Dephosphoryla-
tion. The Protein Substrate is unique because its function is to hold a protein (Kinase or
Phosphatase at the respected time during the chemical reaction). The Substrate will absorb
the Protein and add a phosphate group to itself. This will result in a modified Substrate that
will soon attach to a different protein to repeat the process. An example of what that looks like:

To describe this picture, a Protein Substrate with no phosphate groups stands alone within
a cell. At the same time, a Kinase protein stands alone within the same cell. Once triggered
to preform a function, the Substrate and the Kinase attach and bind together. The Kinase is
then absorbed and a phosphate group is added to the Substrate. The new (modified) Substrate
group, now with one phosphate group, floats alone until a new Kinase is attached. This process
repeats until the cell signals to being Dephosphorylation. In that case, the same process repeats,
but phosphate groups are being removed.

2.2 Chemical Reaction Networks

Definition 2.2. A Chemical Reaction Network is a weighted directed graph with complexes
are the vertices and and arrows labeled by reaction rate constants as the edges.

While we are using a Chemical Reaction Network to model Phosphorylation, this general
graph could be used to model any chemical reaction. Below you will see what the graph looks
like with our proteins being used in the reactions to model Phosphorylation:

S0 +K → S0K → S1 +K → S1K → S2 +K (2.1)

S2 + P → S2P → S1 + P → S1P → S0 + P (2.2)

Looking at this graph, there are three major components to take notes of. These components
are reactions, complexes, and species

Definition 2.3. Reactions are represented by the arrows in the graph and labeled by the
reaction rate constants. The reaction rate constants give the rate at which each reaction
happens. We will label these in order by:

K1, K2, K3, K4, K5, K6, K7, K8 (2.3)

Definition 2.4. Complexes are the vertices in the graph and the chemical compound formed by
the union of species. These are defined by the following with Xi representing the concentration
of each species:

S0 +K, S0K, S1 +K, S1K, S2 +K, S2 + P, S2P, S1 + P, S1P, S0 + P (2.4)

Definition 2.5. Species are the molecules undergoing the chemical reactions that make up
the components of the complexes. These are defined by:

X1 := S0, X2 := S1, X3 := S2, X4 := S0K, X5 := S1K, X6 := S1P, X7 := S2P, X8 := K, X9 := P
(2.5)

Now that we have clearly defined each piece of our graph, we can begin to use this to form
our system of equations

2

2.3 Mass Action Kinetics

Mass Action Kinetics is the tool we use to find our equations.

Definition 2.6. Mass Action Kinetics tells us that the rate of an elementary reaction is
proportional to the product of the concentrations of the species in the reactant. We use Mass
Action Kinetics to obtain a system of Ordinary Differential Equations that model the Chemical
Reaction Network.

Since we have nine species, we will be obtaining nine equations that represent rate of the
reaction with that species. Now we must take a look at the graph and combine the rate of the
reaction of an individual species each time that it goes through the reaction. These will be
represented by Ẋi with i corresponding to its respected species.

S0 +K → S0K → S1 +K → S1K → S2 +K (2.6)

S2 + P → S2P → S1 + P → S1P → S0 + P (2.7)

To give a brief example of how this works, lets begin with finding Ẋ1. We are going to look
at the graph and mathematically model each time the species represented by X1 goes through
a reaction. As stated earlier, X1 represents the species S0. In the graph, S0 goes through
a reaction twice. In the first case, the product of the concentrations is shown through the
variables corresponding the species S0, K, andS0K. Since S0 is being lost as its own species
in the reaction, the reaction rate becomes negative. This results in the first case of X1 to look
like:

−K1 ·X1 ·X8 (2.8)

This process is trivial. After following the same process for the second case, the reaction rate
equation for X1 turns out to be:

Ẋ1 = −K1 ·X1 ·X8 +K8 ·X6 (2.9)

Once this process is repeated for all nine species, a system of equations will be obtained. This
system looks like:

Ẋ1 = −K1X1X8 +K8X6

Ẋ2 = K2X4 −K3X2X8 +K6X7 −K7X2X9

Ẋ3 = K4X5 −K5X3X9

Ẋ4 = K1X1X8 −K2X4

Ẋ5 = K3X2X8 −K4X5

Ẋ6 = K7X2X9 −K8X6

Ẋ7 = −K5X3X9 −K6X7

Ẋ8 = −K1X1X8 +K2X4 −K3X2X8 +K4X5

Ẋ9 = −K5X3X9 +K6X7 −K7X2X9 +K8X6

2.4 Conservation Laws

The last major idea to look at before beginning to solve for the roots of our equation is to
apply the conservation laws. The conservation laws are equations that represent the total
amount of each species. These are important because the amount of species remains constant

3

throughout the graph. The concentration are as follows, with STOT representing the total
amount of Substrate, KTOT representing the total amount of Kinase, and PTOT representing
the total amount of Phosphatase:

STOT = X1 +X2 +X3 +X4 +X5 +X6 +X7

KTOT = X4 +X5 +X8

PTOT = X6 +X7 +X9

Now that we have these three new equations, we are forced to reduce out system to at least
a 9 × 9. Notice that when we take the derivative of each side, we are left with a sum of our
reaction rate equations:

0 = Ẋ1 + Ẋ2 + Ẋ3 + Ẋ4 + Ẋ5 + Ẋ6 + Ẋ7

0 = Ẋ4 + Ẋ5 +X8

0 = Ẋ6 + Ẋ7 + Ẋ9

We can now algebraically simplify and reduce this. After reducing the system of equations as
much as possible, we are left with the following 2× 2 Quadratic Pentanomial System.

c1X
2
8 + c2X8X9 + c3X8 + c4X9 + c5 = 0

c6X
2
9 + c7X8X9 + c8X8 + c9X9 + c10 = 0

We now have a system of equations that will be much easier to work with.

3 A-Discriminant Varieties

While we do ultimately want to solve for the roots of our 9×9 system of polynomial equations,
first we must ask ourselves how many R roots are there, if any at all? In order to do this we
will use something called the A-Discriminant Variety .

Definition 3.1. n-dimensional Projective Space (over a field K), denoted by PnK

{[x0 : · · · : xn] | xi ∈ K} / {[x0 : · · · : xn] = [λx0 : · · · : λxn] ∀λ ∈ K \ {0}}

This is an equivalence class in which numbers that are scalar multiples of one another are
placed in the same equivalence class. To further illustrate this concept, let’s look at P1

R

P1
R is referred to as The Real Projective Line and is defined as follows:

P1
R := {[x0 : x1] | x0, x1 ∈ R}/{[x0 : x1] = [λx0 : λx1] ∀λ ∈ R \ {0}}

One way to visualize this space is the set of all lines that pass through the origin, with numbers
that lie on the same line to be part of the same equivalence class. Another way to imagine this
is through the following diagram:
Each point on the R number line is assigned to a point on the circle. The arrow pointing off
the paper is meant to exemplify the fact that no matter how far off we go on the number line,
the secant line that intersects the circle at any particular point will never be tangent to the
circle. For this reason, we go ahead and assign {∞} to the North Pole!

4

We’re particularly interested in PnC because it becomes a much nicer way to parametrize poly-
nomials since

c1x
a1 + · · ·+ cdx

ad

always has the same roots as

λc1x
a1 + · · ·+ λcdx

ad (∀λ 6= 0)

Definition 3.2. If f(x) = c1x
a1 + · · ·+ cdx

ad and A =
[
a1, . . . , ad

]
∈ Z1×d (ai are distinct)

The A-Discriminant Variety , denoted by ∇A, is defined as:

∇A := {[c1 : · · · : cd] ∈ Pd−1C | f has a degenerate root in C \ {0}}

where f has a degenerate root in C \ {0}} means that at the root, the function has horizontal
tangency.

Example 3.3. f(x) = c0 + c1x+ c2x
2

In this case, ∇A is as follows:

∇A = {[c0 : c1 : c2] ∈ P1
C | {

c0 + c1x+ c2x
2 = 0

c1 + 2c2x = 0
} has a root}

Turns out that if you play around with this system of equations, you end up with the following:

∇A = {[c0 : c1 : c2] ∈ P1
C | c21 − 4c0c2 = 0}

Recall from high school algebra, when c21 − 4c0c2 > 0, c21 − 4c0c2 = 0, and c21 − 4c0c2 < 0, f(x)
has 2, 1, and 0 R roots, respectively. We call c21 − 4c0c2 the A-discriminant polynomial ,
which we denote by ∆A. In general, ∇A is the zero set of ∆A!

Discriminants are important because they divide the coefficient space into regions with con-
stant topology!

For this example, the zero set of ∆A is a double cone

5

If we look at the R part of ∇A ∩ P1
R we get a simpler picture:

In P1
R, our discriminant variety divides our coefficient space into 3 regions, with every point

that lies on the circle representing the set of coefficients that gives us 1 R root, with every set
of coefficients

The R part of ∇A ∩ Pd−1R divides Pd−1R into regions with constant topology, just like the dis-
criminant, but is much easier to work with than our typical A-discriminant polynomial, ∆A!

Example 3.4. f(x, y) = c0 + c1x+ c2y + c3x
4y + c4xy

4

Since we can always multiply by some scalar without changing our roots, we can always write
a polynomial of this form into the following

f(x, y) = 1− αx− βy + xy(x3 + y3)

The A-Discriminant Variety for this example looks like this

The coefficient space is divided up in such a way in which the zero sets are either two connected
pieces or two connected pieces and a point!

6

Extending our definition of ∇A to more than one variable comes naturally, so finally, we can
say:

If we have f(x1, ..., xn) and A =
[
a1, . . . , ad

]
∈ Zn×d

∇A := {[c1 : · · · : cd] ∈ Pd−1C | f = ∂f
∂x1

= ∂f
∂x2

= · · · = ∂f
∂xn

= 0}

Now we can answer the question of which orthants our ∇A touches. If we let C :=
cone over∇A, then in the coefficient space, Rt\C is a union of connected regions where the
number of positive roots of our system is constant. Then we know that if ∇A does not in-
tersect with a particular orthant, then the number of positive roots is constant on the whole
orthant. If ∇A does intersect a particular orthant, then the number of positive roots can vary.

3.1 Horn-Kapranov Uniformization

Horn-Kapranov is going to assist us in seeing how the roots behave by simplifying how find
the Discriminant.

Definition 3.5. Given A = {a1, · · · , am} ⊂ ZN with ∇A a hypersurface, the discriminant
locus ∇A is the closure of:

{[u1λa1 : · · · : umλam] | u ∈ Cm, Au = 0,
m∑
i=1

ui = 0, λ ∈ (C∗)n}

Thus, the null space of a (n+ 1)×m matrix, Â, provides a parametrization of ∇A

Horn-Kapranov allows us to take seemingly complicated polynomials and rescale them by
either a polynomial, x, or y. We can reduce the total number of parametrics and ultimately
have less unknown coefficients we have to account for.

Theorem 3.6. The number of connected components of the real zero set of f(x) =
T∑
i=1

cix
ai

(suitably compactified) is constant when [c1 : · · · : cT] ranges over a fixed connected component
of PT−1R \∇A

This theorem is important because now we know that if we are evaulating the connected
components and the sign of our discriminant polynomial is constant, then we can respectively
read off the number of possible roots straight from the given ∇A

7

3.2 Reduced A-Discriminant Contour

We are able to take a reduced version of our Discriminant Varieties and find a more efficient
way to see the behavior of our coefficients.

Definition 3.7. The Reduced A-Discriminant Contour can be defined as
C := {(log|[λ1 : λ2]|BT)B ⊂ R2}

Notice this is not the same as the previously defined A-Discriminant Variety and this
definition loses information because of the absolute value signs. We are losing information
about the signs of the coefficients which will play a crucial role in how our roots behave.

3.3 Signed Reduced A-Discriminant Contour

We can fix the signs of σ = (sign(c1), · · · , sign(c4)) to get Cσ = a piece of C corresponding to
∇A ∩ Pt−1R with [c1 : · : c4] having sign 6= σ.

Using Horn-Kapranov, we can find the signs of our λ1 and λ2 by finding the right null space
of the given A. We can then find what the signs of the coefficients will be in the projective
space according to which regions.

Example 3.8. A = [0, 1, 2, 3]⇒ f(x) = c1 + c2x+ c3x
2 + c4x

3

Â =

[
1 1 1 1
0 1 2 3

]
⇒ B =


1 2
−2 −3
1 0
0 1


[c1 : c2 : c3 : c4] ∈ P3

R ⇒ sign(λ1 + 2λ2) = σ1 or −σ1
sign(−2λ1 − 3λ2) = σ2 or −σ2
sign(λ1) = σ3 or −σ3
sign(λ2) = σ4 or −σ4

Looking at this example, we have our given A matrix, we can solve for a corresponding B
matrix, and then we are able to use Horn-Kapranov to solve for the signs of the lambdas. We
can then set each sign equation equal to zero which will result in four lines on our λ1 and λ2
coordinate plane in the projective space.

8

As we expected, we can see that the four lines we obtained divide our projective space into
four regions where we have specific sign possibilities.

Notice that the opposite region gives you the exact opposite signs if we are to fill projective
space all the way around the circle. Also, notice that not all sign possibilities are accounted for.
The sign possibilities not accounted for give us sign possibilities that will vary on the amount
of roots obtained.

4 Linear Programming

Now we are able to see how the roots behave depending on the coefficients using our A-
Discriminant Varieties. We have also seen that we are able to get a more accurate version of
this if we pay attention to the signs of our coefficients. To extend more on this idea, we know
that the different combination of signs will tell us where the orthants of constant R roots are.
Our 2 × 2 system has 1024 sign combinations, so we can use Linear Programming to quickly
run through all 1024 sign vectors to see which ones will give us a region with constant roots.

By Horn-Kapranov, the Pt−1R ∩∇A is given by: ((vector of linear forms)rational powers · · ·)

So the possible signs of the coordinates of∇A are described by: (sign(β1·λ), · · · , sign(βt·λ))
where the null space B looks like:

B =


β1
·
·
·
βT


In other words,

A choice of sign σ := (σ1, · · · , σt) ∈ {±1}t occurs ⇔ ∃λ = (λ1, · · · , λt−n−1) ∈ Rt−n−1 with
sign(λ · β1) = σ1 · · · sign(λ · βt) = σt.

So, for LP feasibility, we want to see if λ · β1 + · · ·+ λt−n−1 · βt−n−1><0.

9

4.1 Linear Programming - Step One

The first thing we must do is find the Cayley Embedding of our 2× 2 system.

c1X
2
8 + c2X8X9 + c3X8 + c4X9 + c5 = 0

c6X
2
9 + c7X8X9 + c8X8 + c9X9 + c10 = 0

A =


1 1 1 1 1 1 1 1 1 1
2 1 1 0 0 0 1 1 0 0
0 1 0 1 0 2 1 0 1 0
0 0 0 0 0 1 1 1 1 1


The above A matrix will represent our Cayley Embedding. The first row in the matrix rep-

resents the ones we see after parameterizing with Horn-Kapranov. The second row represents
the exponents on the X’s in both polynomials. The third row represents the exponents on the
Y ’s in both polynomials. Finally, the last row is a block of zeros and ones that are necessary
by the Cayley Trick for this embedding to function properly.

4.2 Linear Programming - Step Two

We must now find the corresponding B matrix which is just the right null space of the previously
obtained A matrix. This will result in the following matrix:

B =



1 1 −1 −1 0 0
−1 0 1 2 1 2
−1 −2 0 −1 −1 −2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 −1 −1 −1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


4.3 Linear Programming - Step Three

The final step of Linear Programming is to solve the 1024 Linear Programming feasibility prob-
lems. Standard Form of Linear Programming we will be using a program that will maximize
c · x such that Ax = b, x ≥ 0. Therefore, we will be placing our A and B matrix in to this
program and ultimately solving the following question:

Does there exist λ such that

λ1 · β1 + · · ·+λt−n−1 · β1,t−n−1
>

<
0

·
·
·

λ1 · βt + · · ·+λt−n−1 · βt,t−n−1
>

<
0

10

λβt >
<

0?

4.4 Results

When we first ran this program 1024 times, we found that there were 674 sign combinations
where the inequalities are feasible. When then realized that we can force c5 and c10 to be
positive because we can always multiply these two coefficients by a number to force them to be
positive without altering the geometry of the roots in the projective space. Once we did this, we
lowered the amount of sign possibilities to 256 and found that there are 151 sign combinations
where the inequalities are feasible. A region lying within the 151 sign combinations where the
inequalities are feasible will result in an area with varying root amounts. The other 105 sign
combinations tell us where the regions of constant roots are. We could go even further to find
exactly which signs give us which number of roots. We will see error drawing these roots out
when our coefficients end up having a sign combination where the inequalities are feasible.

5 Convex Geometry

Solving for the R roots of polynomial systems becomes more challenging as we add more terms
and variables. However, we can use convex geometry to find metric estimates of real roots in
a fraction of the time! Here we will develop some of the tools necessary to build up to our
ultimate goal – the Archimedean Tropical Variety, a construction which splits up the domain
of a function into more specific regions of interest.

Definition 5.1. A convex set is a set of points such that, given any two points P ,Q , then
the line segment PQ is also in the set

Definition 5.2. For any S ⊂ Rn, the convex hull of S, denoted conv{S} is the smallest
convex set containing S.
For a set of points sitting in R2, this looks like the following:

We will use the convex hull function in our first construction, the Newton Polytope.

Definition 5.3. If f(x) =
t∑
i=1

cix
ai , where xai = x

a1,i
1 x

a2,i
2 · · · xan,i

n , the Newton Polytope of

f , denoted by Newt(f), is defined as follows:

11

Newt(f) := conv{ai | ci 6= 0}

The volume of the Newton polytope can be used to compute the degree of the corresponding
hypersurface, and via mixed volumes, the number of roots of systems of equations!

As with most things, this construction and the proceeding ones are best illustrated with an
example.

Example 5.4. f(x, y) = 1 + x2 + y3 − 100xy

If we write this out in the following way, although a bit redundant, we can easily read off the
points that we will then take the convex hull of

f(x, y) = 1 ∗ x0 ∗ y0 + 1 ∗ x2 ∗ y0 + 1 ∗ x0 ∗ y3 − 100 ∗ x1 ∗ y1

⇒ Newt(f) = conv{(0, 0), (2, 0), (0, 3), (1, 1)}

From here we can construct the Archimedean Newton Polytope, which builds on our already
established Newton Polytope by taking into account the coefficient of each term, and assigning
to each point what can be though of as a weight in the negative z direction.

Definition 5.5. If f(x) =
t∑
i=1

cix
ai , where xai = x

a1,i
1 x

a2,i
2 · · ·x

an,i
n , the Archimedean Newton

Polytope of f , denoted by ArchNewt(f), is defined as follows:

ArchNewt(f) := conv{(ai,−Log|ci|) | i ∈ {1, . . . , t}, ci 6= 0}

Example 5.6. f(x, y) = 1 +x2 + y3−100xy = 1∗x0 ∗ y0 + 1∗x2 ∗ y0 + 1∗x0 ∗ y3−100∗x1 ∗ y1

Writing it out in this form again makes it rather easy to see that

ArchNewt(f) = conv{(0, 0,−Log(1)), (2, 0,−Log(1)), (0, 3,−Log(1)), (1, 1,−Log(100))}
= conv{(0, 0, 0), (2, 0, 0), (0, 3, 0), (1, 1,−Log(100))}

12

Using the Newton Polytope and the Archimedean Newton Polytope, we can directly con-
struct what is called the Archimedean Tropical Variety. However, first we will begin with a
definition of the Archimedean Tropical Variety that is independent of the previous two con-
structions, in order to elaborate more on the information this tropical variety can tell us about
a function.

Definition 5.7. If f(x) =
t∑
i=1

cix
ai , where xai = x

a1,i
1 x

a2,i
2 · · ·x

an,i
n , the Archimedean Tropical

Variety of f , denoted by ArchTrop(f), is defined as follows:

ArchTrop(f) := {w ∈ Rn | max
i
|ciew·ai | at ≥ 2 distinct i}

where w = (w1, . . . , wn)

Let’s proceed naively using our familiar example

Example 5.8. f(x, y) = 1 ∗ x0 ∗ y0 + 1 ∗ x2 ∗ y0 + 1 ∗ x0 ∗ y3 − 100 ∗ x1 ∗ y1

|c1ew·a1 | = |1 ∗ e(w1,w2)·(0,0)| = 1

|c2ew·a2 | = |1 ∗ e(w1,w2)·(2,0)| = e2w1

|c3ew·a3 | = |1 ∗ e(w1,w2)·(0,3)| = e3w2

|c4ew·a4 | = | − 100 ∗ e(w1,w2)·(1,1)| = 100ew1+w2

In order to draw ArchTrop(f), let’s look at when each pair of terms is maximal and equal in
norm!

For the 1st and 2nd terms:

1 = e2w1 ⇒ w1 = 0

1 > e3w2 ⇒ 0 > w2

1 > 100ew1+w2 ⇒ −Log100 > w2

In summary, the 1st and 2nd terms dominate when:

w1 = 0
w2 < −Log100

For ArchTrop(f), this gives us the following ray:

13

Repeating the process with the 1st and 3rd terms, 2nd and 3rd terms, etc, yields us the
following graph for ArchTrop(f):

Notice, ArchTrop(f) has divided the domain of our function into pieces where different
terms dominate over the others. For example, on the ray that points to the Northeast, the 2nd

and 3rd terms dominate, the point where this ray originates from, the 2nd,3rd, and 4th terms
dominate, and the area captured within the triangle represents where the 4th dominates all on
its own.

Furthermore, ArchTrop(f) gives us metric information about the roots and areas where we
can find constant isotopy types.Much like how the quadratic discriminant c21 − 4c0c2 gives us
information about the number of roots, ArchTrop(f) can do this for more general curves!

Example 5.9. f(x, y) = 1 + x2 + y3 − cxy (c > 0) (generalized form of our familiar example)

Turns out the zero set of f(x, y) is either ∅, a point, or an oval, and this occurs when c < 6

2
1
3 3

1
2

,

c = 6

2
1
3 3

1
2

, c > 6

2
1
3 3

1
2

, respectively.

Notice, in the case we’ve been working with c = 100 > 6

2
1
3 3

1
2

, which is reflected in our picture

of ArchTrop(f).

Theorem 5.10. Let ZC(f) := the Complex zero set of f
For any pentanomial f in C[x1, . . . , xn], any point of Log|ZC(f)| is within distance log(4) of
some point of ArchTrop(f).

The proof of this theorem is a direct consequence of a more general theorem:

Theorem 5.11. For any f ∈ C[x±11 , · · · , x±1n =] with exactly t ≥ 2 monomial terms and
Newt(f) of dimension k we have:

(1) (a) Amoeba(f) ⊆ ArchTrop(f)log(t−1)and, for k = 1,Amoeba(f) $ ArchTrop(f)log3.

(b) ArchTrop(f) ⊆ Amoeba(f)εk,t where ε1,t := (log9)t− log81
2
< 2.2t− 3.7,

ε2,t :=
√

2(t− 2)((log9)t− log81
2

) < (t− 2)(3.11t− 5.23), and

εk,t :=
√
k[1

4
t(t− 1)]((log9)t− log81

2
) for k ≥ 3.

14

In particular, εk,t <
3
5
t3/2(t− 1)2 for all k ≥ 1 and t ≥ 2.

(2) Let φ(x) := 1 + x1 + · · ·+ xt−1 and ψ(x) := (x1 + 1)t−k + x2 + · · ·xk. Then
(a) Amoeba(φ) contains a point at distance log(t− 1) from ArchTrop(φ) and
(b) ArchTrop(ψ) contains points approaching distance log(t− k) from Amoeba(ψ).

Theorem 3.4, Assertion 1a, from
“Metric Estimates and Membership Complexity for Archimedean Amoebae and Tropical

Hypersurfaces,” (by Martin Avendano, Roman Kogan, Mounir Nisse, and J. Maurice Rojas),
presented at MEGA 2013, Journal of Complexity, Vol. 46, June 2018, pp. 45-65. QED

While this is useful for more general situations, in the case of our 9× 9 system, since there
is a biological process underlying our equations, it doesn’t make sense for us to look at negative
roots, let alone complex ones! This motivates us to look towards another construction, but
fortunately, it is formed similarly as ArchTrop(f).

Definition 5.12. ArchTrop+(f) := {w ∈ Rn | max
i
|ciew·ai | w/ cjcj′ < 0}

Notice ArchTrop+(f) ⊂ ArchTrop(f)

Example 5.13. f(x, y) = 1 + x2 + y3 − 100xy
The coefficient pairs that multiply to a negative product are the 1st and 4th, the 2nd and 4th,
and the 3rd and 4th! Recall that these pairs of terms dominate here:

Which leaves us with the following picture for ArchTrop+(f)

15

ArchTrop+(f) gives us a piecewise linear function that resembles the set of positive roots! More
formally,

Theorem 5.14. Let Z+(f) := the positive zero set of f
For any pentanomial f in C[x1, . . . , xn], any point of Log|ZC(f)| is within distance log(4) of
some point of ArchTrop+(f).

Now let’s go over the method of constructing ArchTrop(f) that requires both Newt(f) and
ArchNewt(f).

From ArchNewt(f) we will need the outer normals of the lower hull of our convex hull. From
there, we will project the lower faces of ArchNewt(f) unto the plane where Newt(f) lies, form-
ing a triangulation of our Newton Polytope.

From Newt(f), we will need the outer normals of the edges of our convex hull

Referring back to our familiar example, that looks like the following:

Once we have these outer normals, we need to normalize them into the form (w,−1), where
we then take w to be the vertices of our ArchNewt(f). Now we will project the edges of our
lower hull onto the plane in which Newt(f) lies.

16

Notice that this induces a triangulation of our Newton Polytope. The dots in these triangles
roughly correspond to the respective outer normals of the lower edges of ArchNewt(f). Finally,
we take the outer normals of the edges of our Newton Polytope, and now ArchTrop(f) looks
like this:

Just as we had before! Now, to elaborate, the vertices of ArchTrop(f) are dual to the
triangulation of Newt(f) induced by the lower faces of ArchNewt(f) as are the rays are dual
to the edges of Newt(f)

17

By dual, we mean there exists a bijective order-reversing mapping from our Newton Poly-
tope on the left to our Archimedean Tropical Variety on the right. Each triangle in our
triangulated Newton Polytope corresponds to a point of ArchTrop(f), and each outer edge of
our triangle corresponds to a ray of ArchTrop(f). In the cases where the Newton Polytope is
triangulated with adjacent triangles, there is a line segment in ArchTrop(f) that connects of
the points that were respectively assigned to.

In order to construct ArchTrop+(f) after constructing ArchTrop(f) like this, we look again
for alternating signs. We do this by assigning to each of our exponent vectors a corresponding
sign. Then, we look for pieces which containing the same signs, and in a sense “turn off” that
piece of ArchTrop+(f). Our Newton Polytope now looks like this:

Notice that the ray pointing to the Northeast lies on the exterior edge of our Newton Poly-
tope connected by two positive points, so the corresponding ray of ArchTrop(f) will not appear
in ArchTrop+(f)!

Before we go on, a small discrepancy must be pointed out with ArchTrop+(f), which is
best illustrated with an example.

Example 5.15. f(x) = 1− 1.1x+ x2

ArchTrop+(f) looks like

18

ArchTrop+(f) is telling us that two points make up the positive zero set of our function,
but if you look at the discriminant ⇒ 1.12 − 4 < 0⇒ f has two non-R roots! So this is a case
in which ArchTrop+(f) is not giving us accurate information. On the other hand, if you look
at {c ∈ R+ | connected zero set of (1− cx+ x2) 6= ArchTrop+(f)} = (0, 2).

This isn’t too bad when compared to the entirety of R, so it does not negate our study of
ArchTrop+(f)

6 Our Research

In this section, we will be applying these constructions to our reduced 2 × 2 quadratic pen-
tanomial system, while motivating how we wrote our code throughout.

f1(x8, x9) = c1x
2
8 + c2x8x9 + c3x8 + c4x9 + c5

f2(x8, x9) = c6x
2
9 + c7x8x9 + c8x8 + c9x9 + c10

Constructing their respective Newton Polytopes results in the following convex hulls, along
with their corresponding outer normals, yields us:

For the moment, we will focus on f1, since all of the constructions are similar for both
functions.

Example 6.1. Suppose c1 = 1, c2 = −10, c3 = −10, c4 = 2, c5 = 1

This results in the following combination of signs:

19

With these coefficients, we end up with the following for ArchNewt(f1):

From there we obtain the following triangulation of Newt(f1):

Hence, the following for ArchTrop+(f1):

20

We used Matlab to produce the above image. At first our code was hyper-specific to
the aforementioned triangulation. We started to use Matlab’s random integer generator for
the interval [−10, 10]\{0} (using a uniform distribution), while keeping the signs the same.
However, when we found the following coefficients,

c1 = 6, c2 = −8, c3 = −3, c4 = 2, c5 = 7

ArchTrop+(f1) was not plotting as we were expecting it to. This is because we didn’t realize
that we obtain the following picture for ArchNewt(f1):

and subsequently the following picture for Newt(f1):

21

This triangulation of our Newt(f1) consists of two triangles, hence our ArchTrop+(f1) would
only contain two vertices! After some careful analysis, we soon came to find out, that actually
there were a total of 5 possible triangulations for f1.

Again, since Newt(f2) is merely a rotation of Newt(f1), it too has only 5 possible trianglu-
ation for f2! Once we moved passed that, we able to begin to successfully draw pictures for
ArchTrop+(f1) and ArchTrop+(f2):

Example 6.2. Suppose for f2 we had the following coefficients:

c6 = 1, c7 = −10, c8 = −10, c9 = 2, c10 = 1

Following the same steps yields us the following for ArchTrop+(f2):

Something interesting happens when we plot both on the same set of axes!

22

Notice that ArchTrop+(f1) and ArchTrop+(f2) intersect 3 times (represented by the cyan
points)! This will come in handy in just a moment. Recalling Theorem 5.10, notice what hap-
pens when we plot Log|Z+(f1)| and Log|Z+(f2)| on the same set of axes as their corresponding
ArchTrop+(fi).

Notice what happens when we plot all of these together on the same set of axes:

The positive zero sets have the same number of intersections (represented by the black
points) as ArchTrop+(f1) ∩ ArchTrop+(f2)! It is important to note that they do not line up
perfectly, but we’ll get to that shortly.In the meantime, we have a theorem to go along with
this phenomenon:

Theorem 6.3. If F is a random real 2×2 quadratic pentanomial system with supports having
Cayley embedding

A =

[
2 1 1 0 0 0 1 1 0 0
0 1 0 1 0 2 1 0 1 0

]
,

23

such that the coefficient vector (c1, . . . , c10) has each ci with mean 0, then with probability
at least 41%, F has the same number of positive roots as the cardinality of ArchTrop(f1) ∩
ArchTrop(f2).

The proof follows from our analysis of sign conditions:

Proof. Assuming the constant terms of both f1 and f2 are normalized to be 1 (dividing each
equation fi = 0 by a suitable constant), there are a total of 24 ∗ 24 = 256 possibilities for the
remaining signs. Via linear programming, we found that ∇A intersect exactly 151 of these
orthants. Assuming each coefficient is a real random variable with mean 0, this means that
positive and negative sign are equally likely, and occur respectively with probability 50%. So
by our later theorem on signed chambers, the cardinality of the ArchTrop(fi) intersections and
the intersections of the Log |Z+(fi)| are the same on exactly 256− 151 = 105 out of 256 of the
possible orthants. So, with probability at least 105/256 > 0.41, these intersection cardinalities
are the same and we are done. QED

While 41% may not seem like the most appealing number, we will see soon that it turns
out that this number appears to be closer to 75%!

In order to test this theorem, we used Matlab’s random number generator, which relies
on the Uniform distribution. We specified our numbers to the interval [−10, 10] because we
figured since the coefficients of these numbers are derived from chemical reactions taking place
in cells, their magnitudes probably won’t blow up to high. Here are a few successes:

24

For all of these examples, the number of intersections of the zero sets and ArchTrop+(f1) ∩
ArchTrop+(f2) are the same! Now for a few failures...

25

The first two failures relate to the fact that sometimes the number of connected components
of a function’s positive zero set does not correspond to the number of connected components
of that function’s ArchTrop+ construction. The final failure does not deal with this, how-
ever, notice that ArchTrop+(f1) and ArchTrop+(f2) intersect twice, while the Log|Z+(f1)| and
Log|Z+(f2)| never intersect.

Intuitively, this happens because of the fact that Log|Z+(fi)| is within a distance of Log(4)
of ArchTrop+(fi). When ArchTrop+(f1) and ArchTrop+(f2) intersect perpendicularly, the
margin of error looks something like this:

However if ArchTrop+(f1) and ArchTrop+(f2) intersect at different angles, the margin of error
increases:

We, of course, have a theorem for that:

Theorem 6.4. For any 2×2 polynomial system non-degenerate F with supports having Cayley
embedding A, the number of nonzero real roots of F depends only on the completed signed
A-discriminant chamber containing F .

Essentially, if you are ”deep” in a signed chamber of the A-Discriminant Variety, then the
intersections are more likely to match up. This is because if you jiggle the coefficients, then you

26

will still very clearly remain in the same signed chamber of the discriminant variety. However,
if you are closer to the A-Discriminant Variety, then this is more likely to fail. This is because
if you jiggle the coefficients, you may actually end up in a different signed chamber, since, after
all, the A-discriminant variety tells us regions in coefficient space where the signs change.

Putting this aside for the moment, we ran through 1000 different examples using ran-
dom coefficients found between [−10, 10] \ 0, and computed the Hausdorff distance between
ArchTrop(f1)∩ArchTrop(f2) and Log|Z+(f1)|∩Log|Z+(f2)|, to obtain the following histogram:

This shows that our constructions are more likely to work closer to 75% of the time rather
than the initial 41% of the time.

7 Future Research

7.1 Generalizing our code

As we mentioned before, in order to develop our code, we took advantage of the fact that there
were only 5 possible triangulations for each of our given functions. While this worked out nicely
in this case, we would like to someday generalize our code in such a way that we don’t need to
write things in a case by case situation, seeing as the possibilities for triangulations can very
well increase the more terms are added to a function.

7.2 Finding a condition number

If we let h0(·) := th number of connected components of ’·’, then we are particularly interested
in finding when the following holds:

h0(Z+(f)) = h0(ArchTrop+(f))

27

Although we have some idea of how probable it is that our constructions will work, it would
be even better to find out which set of coefficients will change.

7.3 Stability and the Jacobian

Although we didn’t get to this this summer, it is very much worth it to note that our systems,
at the end of the day, are differential equations. While we do have a fairly reliable way of finding
the positive roots, there still is room for things to be said about whether or not these solutions
are stable, and we can figure that out by examining the eigenvalues of the corresponding
Jacobian Matrix!

28

