
A Faster Randomized Algorithm for Root Counting in
Prime Power Rings

Leann Kopp and Natalie Randall

July 17, 2018

Abstract

Let p be a prime and f ∈ Z[x] a polynomial of degree d such that f is not identically
zero mod p. We introduce a Las Vegas randomized algorithm to count the number of
roots of f in Z/(pk) for k ∈ N with k ≥ 2 which runs in time d1.5+o(1)(log p)2+o(1)1.12k.
We compare the randomized algorithm to simple brute force to see when we have practical
time gains. In addition, we present an upper bound on the number of roots of f (as a
function of p, k, and the degree of f) that is optimal for k = 2.

1 Introduction

A deterministic algorithm for counting roots in Z/(pk) in time (dlog(p) + 2t)O(1) is given in [2].
Here we propose a Las Vegas randomized algorithm which runs in time d1.5+o(1)(log p)2+o(1)1.12k.
By “Las Vegas randomized,” we mean that our algorithm undercounts roots with a fixed
error probability but otherwise returns a correct root count and always correctly announces
failure. For instance, if we take our fixed error probability to be 1

3
, we can get an overall

failure probability of less than 1
3100

by running the algorithm 100 times. Las Vegas randomized
algorithms are common across algorithmic number theory; there are fast, widely accepted Las
Vegas randomized algorithms for checking primality and for factoring polynomials over finite
fields [1, 3, 4]. In our algorithm, we introduce randomization by using fast factorization (see
[3]) to find roots of f in Z/(p).

Prior to the deterministic algorithm in [2] there was little information on counting the
roots of a polynomial over prime power rings. We can easily count the number of roots of a
polynomial f in Z/(p) by taking the degree of gcd(xp − x, f), but this method relies on Z/(p)
being a unique factorization domain, and Z/(pk) is not a unique factorization domain for k > 1.
To overcome this issue, we consider the Taylor expansion of our polynomial f about a root
ζ of the mod p reduction of f with a perturbation of pε, where ε ∈ {0, . . . , pk − 1}. From
this expansion, we can divide by certain powers of p in order to recursively isolate the roots of
f in the ring Z/(pk). From a similar expansion, we also get an upper bound for the number
of roots of f in Z/(pk) given by min{d, p}pk−1 and a sharp upper bound for k = 2 given by
min{bd

2
c, p}pk−1 + (d mod 2).

2 Background and Randomized Algorithm

Lemma 2.1 (Hensel’s Lemma). If f ∈ Z[x] is a polynomial with integer coefficients, p is
prime, and ζJ ∈ {0, . . . , pJ−1 − 1} is a root of f (mod pJ) and f ′(ζJ) 6= 0 (mod p), then there
is a unique ζ ∈ {0, . . . , pJ+1 − 1} with f(ζ) = 0 (mod pJ+1) and ζ = ζJ (mod pJ).

1



We will see below that we can use Hensel’s Lemma to determine the number of lifts of a
root ζi with s(i, ζi) = 1.

Consider the expansion of f given by

f(ζ + pε) = f(ζ) + f ′(ζ)pε+ · · ·+ fmin(d,k−1)(ζ)
min(d,k−1)! p

min(d,k−1)εmin(d,k−1) mod pk,

where ζ is a root of the mod p reduction of f . Let s ∈ {1, . . . , k} be the maximal

integer such that ps divides each of f(ζ), f ′(ζ)p, . . . , f
min(d,k−1)(ζ)

min(d,k−1)! p
min(d,k−1). More precisely,

s = min{ordp(f(ζ)), ordp(f
′(ζ)p), . . . , ordp(

fmin(d,k−1)(ζ)

min(d,k−1)! p
min(d,k−1))}, where ordp(x) refers to the

p-adic valuation of x. If f(ζ + pε) = 0 (mod pk), then we can write

ps(f(ζ)
ps

+ f ′(ζ)
ps−1 ε+ · · ·+ fmin(d,k−1)(ζ)

(min(d,k−1)!ps−min(d,k−1) ε
min(d,k−1)) = 0 mod pk,

which is true if and only if

f(ζ)
ps

+ f ′(ζ)
ps−1 ε+ · · ·+ fmin(d,k−1)(ζ)

(min(d,k−1)!ps−min(d,k−1) ε
min(d,k−1) = 0 mod pk−s.

In the case where s = 1, if f ′(ζ) = 0 mod p then we must have that p2 - f(ζ) and so ζ has no
lifts mod pk; however, if f ′(ζ) 6= 0 mod p, then ζ lifts to one unique root by Hensel’s Lemma. In

the case where s = k, the entire expression ps(f(ζ)
ps

+ f ′(ζ)
ps−1 ε+ · · ·+ fmin(d,k−1)(ζ)

(min(d,k−1)!ps−min(d,k−1) ε
min(d,k−1))

vanishes identically mod pk, so any ε ∈ {0, . . . , pk−1} is a zero of f(ζ + pε) and therefore we
have that ζ has pk−1 lifts.

The key idea of the randomized algorithm is that counting the number of roots when
s = 1 and s = k is simple, as described above, and we can reduce all the computations to
these two cases using recursion. If s ∈ {2, . . . , k − 1}, we can reapply the algorithm to an

instance of counting roots for the polynomial f(ζ)
ps

+ f ′(ζ)
ps−1 ε+ · · ·+ fmin(d,k−1)(ζ)

(min(d,k−1)!ps−min(d,k−1) ε
min(d,k−1)

in Z/(pk−s). Eventually this will reduce to the case where either s = 1 or s = k and the
recursion will terminate, giving us that the root ζ of f mod p has a total number of ps−1· (the

number of roots of f(ζ)
ps

+ f ′(ζ)
ps−1 ε + · · · + fmin(d,k−1)(ζ)

(min(d,k−1)!ps−min(d,k−1) ε
min(d,k−1) mod pk−s) lifts to roots

in Z/(pk).

Algorithm 1 Randomized Prime Power Root Counting

1: function count(f ∈ Z[x] has degree d and is not identically 0 mod p, prime p, k ∈ N
such that k ≥ 2)

2: Factor f as in [3]
3: count := number of distinct linear factors of multiplicity 1 . These roots in Z/(p) can

be lifted uniquely to roots in Z/(pk).
4: Push {ζ0 ∈ {0, . . . , p− 1}|f(ζ0) = f ′(ζ0) = 0 mod p and f(ζ0) = 0 mod p2} onto a stack
S

5: while S 6= 0 do
6: Pop a root ζ0 from the stack and define s(0, ζ0) := maximal integer such that ps(0,ζ0)

divides each of f(ζ0), f
′(z0)pε, . . . ,

fmin(d,k−1)(ζ0)

min(d,k−1)! p
min(d,k−1)

7: if s(0, ζ0) = k then
8: count← count+ pk−1

9: else
10: Define fζ0(x) := 1

ps(0,ζ0)
f(ζ0 + px)

11: count← count+ ps(0,ζ0)−1count(fζ0(x), p, k − s(0, ζ0))
12: end if
13: end while
14: return count
15: end function

2



Since the non-degenerate roots of the mod p reduction of f have a unique lift by Hensel’s
Lemma, we only need to keep track of the degenerate roots. Our recurrence takes a degenerate
root ζ0 as a point in a cluster of roots of f in Z/(pk) and recovers the other points in this
cluster by expanding ζ0 to more digits base-p. In this way, we count the number of roots of f
in Z/(pk) by counting the number of lifts from each root ζi of f in Z/(p).

3 Discussion of Complexity Bound and Experimental

Data

𝑓𝑑 non-degenerate 
roots of 𝑓 mod 𝑝

𝑓ζ1(𝜀)
𝑑1 non-degenerate 

roots of 𝑓ζ1(𝜀) mod 𝑝

𝑝𝑠(𝑖,ζ𝑖)𝑓ζ1
identically zero 
mod 𝑝𝑘 ⇒ 𝑝𝑘−1

𝑓ζ𝑙(𝜀)
𝑑𝑙 non-degenerate 

roots of 𝑓ζ1(𝜀) mod 𝑝

𝑓ζ2(𝜀)
𝑑2 non-degenerate 

roots of 𝑓ζ2(𝜀) mod 𝑝

𝑝𝑠(𝑖,ζ𝑖)𝑓ζ1
identically zero 
mod 𝑝𝑘 ⇒ 𝑝𝑘−1

Figure 1: Diagram of complexity tree

In the Figure 1, we see the basic tree structure of the algorithm. We need only keep track
of the degenerate roots of f ; the degenerate roots of f , denoted by ζi, become the children

3



nodes from which more branching occurs. The depth and branching of our recurrence tree is
strongly limited by the value of k and the degree of f . For the initial parent node, the total
number of degenerate roots is less than or equal to d

2
, and for each subsequent child node, the

total number of degenerate roots is less than or equal to
s(i,ζi)−dfζi

2
. Non-degenerate roots have

a unique lift by Hensel’s Lemma, so non-degenerate roots require no additional computations
and are therefore shown on the left of the tree. We also see that we have a maximum of
s(1, ζ1) · · · s(l, ζl) nodes at the bottom level of the tree.

We use Kedlaya-Umans fast Z/(p)[x] factoring algorithm found in [3], which takes time
d1.5+o(1)(log p)1+o(1) + d1+o(1)(log p)2+o(1) for a degree d polynomial, in order to factor the poly-
nomials at each node in Z/(p). In simplest terms, we can consider our total complexity as
being less than or equal to (the number of nodes in the recursion tree) × (the complexity of
factoring over Z/(p)[x]). Optimizing parameters, the worst case occurs when d ≈ e ≈ 2.71828
and the depth of the tree is k

e
. The final complexity of the randomized algorithm is given by

(d1.5 log p)1+o(1) + (d log2 p)1+o(1) + [(min{d, k − 1}1.5 log p)1+o(1) + (min{d, k −
1} log2 p)1+o(1)](e/2)bk/ec,

where (e/2)bk/ec ≈ 1.12k.
Based on this complexity bound, we expect to see time improvements even for p as small as

2 when compared to brute-force counting since brute-force counting takes time approximately
pk, giving us that brute-force takes time approximately 2k for p = 2, while the randomized
algorithm takes time approximately 1.12k. More details regarding computational time with
p = 2 are given in Tables 1 and 2.

We now present computational data which illustrates the advantages to using the random-
ized algorithm over the brute force method. The brute force method takes a polynomial f , a
prime p, and a power k, and evaluates f at each value i from 0 to pk − 1. If f(i) is identically
equal to 0 (mod pk), then that contributes to the total number of roots of f ∈ Z/(pk). We
start by comparing the run times of the brute force algorithm and the randomized algorithm
for p = 2.

Table 1 displays the average difference in computation time for the number of roots of 100
random polynomials of degree less than or equal to 100 in Z/(2k) for the given k, between
brute force and the randomized algorithm (negative implies brute force was faster). The times
are shown in seconds. In general, a single computation took less than a second, so differences
in the milliseconds are not insignificant. From the table, we see a switch from brute-force being
more efficient to the randomized algorithm being more efficient at k = 10, and the difference
becomes more pronounced as k increases.

k 8 9 10 11 15
Avg Diff (in seconds) -0.0011 -0.00029 0.0028 0.01701 0.32499

Table 1: Average Difference in Run Times for 100 random polynomials with p = 2, taken as (time of brute-
force)-(time of randomized algorithm)

4



f p k Brute Force Randomized Algorithm

−71x4 + 21x3 − 84x2 − 47x+ 63 2 5 0 ns 0 ns
21x5 − 66x4 − 24x3 − 88x2 − 17x− 32 2 6 0 ns 1000.00 µs
−75x6 + 82x5 − 93x4 − 19x3 + 3x+ 65 2 7 1000.00 µs 1000.00 µs
x7 + x6 + 62x5 − 23x3 − 58x− 66 2 8 1000.00 µs 1000.00 µs

48x8 − 23x6 + 90x5 − 19x3 + 31x+ 7 2 9 3.00 ms 1000.00 µs
80x8 − 37x7 − 89x6 + 58x3 + 32x2 − 61 2 10 5.00 ms 0 ns
−52x8 + 51x6 − 75x5 + 23x3 − 27x2 − 38x 2 11 11.00 ms 3.00 ms
61x10 − 80x9 − 17x6 − 90x5 + 13x4 + 68 2 12 51.00 ms 2.00 ms
18x10 + 51x8 + 49x6 + 34x5 − 64x2 + 70 2 13 35.00ms 2.00 ms
89x12 − 56x9 + 73x5 − x4 + 80x3 + 69x2 2 14 75.00 ms 6.00 ms
−93x10 − 36x6 + 53x5 − 78x4 − 67x2 + 88 2 15 212.00 ms 2.00 ms

Table 2: Run times for 5 ≤ k ≤ 15, d < k − 1

Table 2 shows the difference in computational time with specific examples, giving an idea
of the overall time it takes for both the randomized algorithm and brute-force to run when
p = 2. The difference in computational run time becomes more noticeable when we introduce
larger primes.

f p k Brute Force Randomized Algorithm

−44x84 + 71x83 − 17x67 − 75x49 − 10x11 − 7 211 3 92.19 sec 11.00ms
−10x89 + 31x82 − 51x61 + 77x50 + 95x48 + x38 701 3 65.83 min 1000.00 µs
−15x99 − 59x74 − 96x29 + 72x28 − 87x27 + 47x3 1049 3 3.81 hours 1000.00 µs

Table 3: Run times for p with at least 3 digits

Table 3 illustrates the advantages of using the randomized algorithm over brute-force for
computations involving large prime numbers. Table 4 displays the run times for the randomized
algorithm for prime numbers with at least four digits. We begin to see a very significant
difference between brute force and the randomized algorithm for large primes; it took the
brute force method almost 4 hours to count the number of roots of a polynomial in Z/(pk)
when p was a 4 digit prime number, while the randomized algorithm counted the roots of a
polynomial in Z/(pk) when p was a 9 digit prime in approximately a minute and a half.

f p k t

−56x76 + 73x64 − x57 + 80x40 + 69x35 + 76x 8713 3 2.00ms
53x94 − 78x37 − 67x27 + 88x26 − 5x9 − 36x8 13177 3 4.00ms

55x98 − 49x74 + 86x60 − 23x43 + 17x19 + 31x2 95213 3 27.00ms
35x93 + 34x84 − 14x56 − 92x54 − 90x27 − 32x2 104729 3 29.00ms
62x78 − 31x57 + 57x21 + 98x16 − 80x6 − 51x5 15485863 3 5.08s
−40x90 − 10x81 + 67x69 − 40x41 − 82x36 − 82x6 104395301 3 41.49s
−80x87 − 72x70 + 36x60 + 71x52 + 54x38 + 84x12 179424673 3 92.51s

Table 4: Run times for the randomized algorithm when p has ≥ 4 digits

5



We expect the randomized algorithm to take the longest when a polynomial has many de-
generate roots because a polynomial of this type will require many recursive calls. Polynomials
with many degenerate roots do take longer than a random polynomial, but overall the random-
ized algorithm still outperforms other methods. For instance, counting roots of the 55 degree
polynomial (x − 1)(x − 2)2 · · · (x − 10)10 in Z/(3110) took 6.4 seconds using the randomized
algorithm, while counting roots in the same ring with a random polynomial of the same degree
took only 1 millisecond. Despite this slowdown for polynomials with very degenerate roots,
the randomized algorithm still outperforms other methods; counting roots of a polynomial in
just Z/(316) using brute force took 2.7 hours.

4 Bound on Number of Roots

Lemma 4.1. If a root ζ of the mod p reduction of f has multiplicity j, then sζ ≤ j, where sζ

is the greatest integer such that psζ divides each of f(ζ), . . . , f
(k−1)(ζ)
(k−1)! p

k−1εk−1.

Proof. If ζ has multiplicity j, then f(ζ) = · · · = f j−1(ζ) = 0 (mod p), but f (j)(ζ) 6= 0 (mod p).

So fj(ζ)
j!
pj is divisible by pj but not pj+1 and therefore sζ ≤ j.

Theorem 4.2. Let p be a prime, f ∈ Z[x] a polynomial of degree d, and k ∈ N such that
d ≥ k ≥ 2. Then Nf (p, d, k) ≤ min{d, p}pk−1, where Nf (p, d, k) denotes the number of roots
of f in Z/(pk).

Proof. Let ζi ∈ {0, . . . , p − 1} be any root of the mod p reduction of f , and let s(i, ζi) be

the greatest integer such that ps(i,ζi) divides each of f(ζi), . . . ,
fmin(d,k−1)(ζi)
min(d,k−1)! p

k−1. Set fζi(x) =
1

ps(i,ζi
f(ζi + px). Clearly, we have that Nf (p, d, 1) ≤ min{d, p}. We know from Lemma 4.1 that

if ζi ∈ Z/(p) is a root of multiplicity J , then J ≤ s. Let δ1 denote the number of non-degenerate
roots of f mod p. From this, we see that

Nf (p, d, k) ≤
δ1 +

∑min(d,k−1)
J=2

∑
ζi with s(i,ζi)=J

ps(i,ζi)−1 ·Nfζi
(p, k − 1, k − s(i, ζi)) +

∑
ζi with s(i,ζi)=k

pk−1.

Considering that Nfζi
(p, k − 1, k − s(i, ζi)) ≤ pk−s(i,ζi), we get

Nf (p, d, k) ≤
∑min(d,k−1)

J=1

∑
ζi with s(i,ζi)=J

ps(i,ζi)−1 · pk−s(i,ζi) +
∑

ζi with s(i,ζi)=k
pk−1,

Nf (p, d, k) ≤
∑min(d,k−1)

J=1

∑
ζi with s(i,ζi)=J

pk−1 +
∑

ζi with s(i,ζi)=k
pk−1,

Nf (p, d, k) ≤
∑k

J=1

∑
ζi with s(i,ζi)=J

pk−1.

Since the number of distinct roots of the mod p reduction of f is less than min{d, p}, we get
that Nf (p, d, k) ≤ min{d, p}pk−1, as desired.

Examples of polynomials with more than b d
k
cpk−1 roots are given below. These examples

show that our bound is within a factor of k of optimality when d ≤ p.

Example 4.3. (x− 2)7(x− 1)3 with p = 17, k = 7 has 24, 221, 090 roots, which is greater than
b d
k
cpk−1 = 24, 137, 569.

Example 4.4. (x− 1)kx has pk−1 + 1 roots when d = k + 1 ≤ p.

The following examples show that we can have pk roots when d ≥ p.

Example 4.5. (xp − x)k is a polynomial of degree pk with pk roots in Z/(pk).

Example 4.6. (xp
k−pk−1 − 1)xk has degree pk − pk−1 + k and also vanishes on all of Z/(pk).

6



Theorem 4.7. Let p be a prime and f ∈ Z[x] a polynomial of degree d such that d ≥ 2. Then
the number of roots of f in Z/(p2) is less than or equal to min{bd

2
c, p}p+ (d mod k), and this

bound is sharp.

Proof. Let ζi ∈ {0, . . . , p − 1} be any root of the mod p reduction of f , and let s(i, ζi) be the

greatest integer such that ps(i,ζi) divides each of f(ζi), . . . ,
fmin(d,k−1)(ζi)
min(d,k−1)! p

k−1. Let δ1 denote the

number of roots of f in Z/(p) with s(i, ζi) = 1, and let δ2 denote the number of roots of f in
Z/(p) with s(i, ζi) = 2. We know that δ1 + 2δ2 ≤ d and that δ2 ≤ bd2c by Lemma 4.1. Using
this,

Nf (p, d, 2) ≤ δ1 + pδ2,
Nf (p, d, 2) ≤ (d− 2δ2) + pδ2,
Nf (p, d, 2) ≤ (d− 2bd

2
c) + bd

2
cp,

Nf (p, d, 2) ≤ bd
2
cp+ (d mod 2).

To show that this bound is sharp, we give several examples below for which this bound equals
the number of roots of f in Z/(p2).

Example 4.8. With p = 5, the degree 3 polynomial (x − 1)2x has b3
2
c · 5 + (3 mod 2) = 6

roots in Z/(p2).

Example 4.9. In general, for i, j ∈ Z/(p) such that i 6= j, the polynomial (x− i)2(x− j) has
bd
2
cp+ (d mod 2) roots in Z/(p2) when d ≥ 2 and bd

2
c ≤ p.

5 Acknowledgements

We would like to thank our advisor, Dr. J. Maurice Rojas, for his assistance and guidance;
we would also like to thank Yuyu Zhu for all the suggestions and advice she gave us. We
also thank Texas A&M University for hosting and the National Science Foundation (NSF) for
funding this program.

References

[1] Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algorithms,
MIT Press, Cambridge, MA, 1996.

[2] Qi Cheng; Shuhong Gao; J. Maurice Rojas; and Daqing Wan, “Counting Roots for
Polynomials Modulo Prime Powers,” Proceedings of ANTS XIII (Algorithmic Number
Theory Symposium, July 1620, 2018, University of Wisconsin, Madison), to appear.

[3] Kiran Kedlaya and Christopher Umans, “Fast polynomial factorization and modular com-
position,” SIAM J. Comput., 40 (2011), no. 6, pp. 17671802.

[4] Qi Cheng, “Primality Proving via One Round in ECPP and One Iteration in AKS,”
Journal of Cryptology, July 2007, Volume 20, Issue 3, pp. 375387

[5] Ivan Niven; Herbert S. Zuckerman; and Hugh L. Montgomery, An Introduction to the
Theory of Numbers. John Wily & Sons, Inc., 1991.

7


