A Faster Randomized Algorithm for Root Counting in Prime Power Rings

Leann Kopp and Natalie Randall

July 17, 2018

Abstract

Let p be a prime and $f \in \mathbb{Z}[x]$ a polynomial of degree d such that f is not identically zero mod p. We introduce a Las Vegas randomized algorithm to count the number of roots of f in $\mathbb{Z}/(p^k)$ for $k \in \mathbb{N}$ with $k \geq 2$ which runs in time $d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k$. We compare the randomized algorithm to simple brute force to see when we have practical time gains. In addition, we present an upper bound on the number of roots of f (as a function of p, k, and the degree of f) that is optimal for k = 2.

1 Introduction

A deterministic algorithm for counting roots in $\mathbb{Z}/(p^k)$ in time $(d\log(p) + 2^t)^{O(1)}$ is given in [2]. Here we propose a Las Vegas randomized algorithm which runs in time $d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k$. By "Las Vegas randomized," we mean that our algorithm undercounts roots with a fixed error probability but otherwise returns a correct root count and always correctly announces failure. For instance, if we take our fixed error probability to be $\frac{1}{3}$, we can get an overall failure probability of less than $\frac{1}{3^{100}}$ by running the algorithm 100 times. Las Vegas randomized algorithms are common across algorithmic number theory; there are fast, widely accepted Las Vegas randomized algorithms for checking primality and for factoring polynomials over finite fields [1, 3, 4]. In our algorithm, we introduce randomization by using fast factorization (see [3]) to find roots of f in $\mathbb{Z}/(p)$.

Prior to the deterministic algorithm in [2] there was little information on counting the roots of a polynomial over prime power rings. We can easily count the number of roots of a polynomial f in $\mathbb{Z}/(p)$ by taking the degree of $gcd(x^p - x, f)$, but this method relies on $\mathbb{Z}/(p)$ being a unique factorization domain, and $\mathbb{Z}/(p^k)$ is not a unique factorization domain for k > 1. To overcome this issue, we consider the Taylor expansion of our polynomial f about a root ζ of the mod p reduction of f with a perturbation of $p\varepsilon$, where $\varepsilon \in \{0, \ldots, p^k - 1\}$. From this expansion, we can divide by certain powers of p in order to recursively isolate the roots of f in the ring $\mathbb{Z}/(p^k)$. From a similar expansion, we also get an upper bound for the number of roots of f in $\mathbb{Z}/(p^k)$ given by $\min\{d, p\}p^{k-1}$ and a sharp upper bound for k = 2 given by $\min\{\lfloor \frac{d}{2} \rfloor, p\}p^{k-1} + (d \mod 2)$.

2 Background and Randomized Algorithm

Lemma 2.1 (Hensel's Lemma). If $f \in \mathbb{Z}[x]$ is a polynomial with integer coefficients, p is prime, and $\zeta_J \in \{0, \ldots, p^{J-1} - 1\}$ is a root of $f \pmod{p^J}$ and $f'(\zeta_J) \neq 0 \pmod{p}$, then there is a unique $\zeta \in \{0, \ldots, p^{J+1} - 1\}$ with $f(\zeta) = 0 \pmod{p^{J+1}}$ and $\zeta = \zeta_J \pmod{p^J}$.

We will see below that we can use Hensel's Lemma to determine the number of lifts of a root ζ_i with $s(i, \zeta_i) = 1$.

Consider the expansion of f given by

$$f(\zeta + p\varepsilon) = f(\zeta) + f'(\zeta)p\varepsilon + \dots + \frac{f^{\min(d,k-1)}(\zeta)}{\min(d,k-1)!}p^{\min(d,k-1)}\varepsilon^{\min(d,k-1)} \mod p^k,$$

where ζ is a root of the mod p reduction of f. Let $s \in \{1, \ldots, k\}$ be the maximal integer such that p^s divides each of $f(\zeta), f'(\zeta)p, \ldots, \frac{f^{\min(d,k-1)(\zeta)}}{\min(d,k-1)!}p^{\min(d,k-1)}$. More precisely, $s = \min\{ord_p(f(\zeta)), ord_p(f'(\zeta)p), \ldots, ord_p(\frac{f^{\min(d,k-1)(\zeta)}}{\min(d,k-1)!}p^{\min(d,k-1)})\}$, where $ord_p(x)$ refers to the p-adic valuation of x. If $f(\zeta + p\varepsilon) = 0 \pmod{p^k}$, then we can write

$$p^{s}\left(\frac{f(\zeta)}{p^{s}} + \frac{f'(\zeta)}{p^{s-1}}\varepsilon + \dots + \frac{f^{\min(d,k-1)}(\zeta)}{(\min(d,k-1)!p^{s-\min(d,k-1)}}\varepsilon^{\min(d,k-1)}\right) = 0 \mod p^{k}$$

which is true if and only if

$$\frac{f(\zeta)}{p^s} + \frac{f'(\zeta)}{p^{s-1}}\varepsilon + \dots + \frac{f^{\min(d,k-1)}(\zeta)}{(\min(d,k-1)!p^{s-\min(d,k-1)})}\varepsilon^{\min(d,k-1)} = 0 \mod p^{k-s}.$$

In the case where s = 1, if $f'(\zeta) = 0 \mod p$ then we must have that $p^2 \nmid f(\zeta)$ and so ζ has no lifts mod p^k ; however, if $f'(\zeta) \neq 0 \mod p$, then ζ lifts to one unique root by Hensel's Lemma. In the case where s = k, the entire expression $p^s(\frac{f(\zeta)}{p^s} + \frac{f'(\zeta)}{p^{s-1}}\varepsilon + \cdots + \frac{f^{\min(d,k-1)}(\zeta)}{(\min(d,k-1)!p^{s-\min(d,k-1)}}\varepsilon^{\min(d,k-1)})$ vanishes identically mod p^k , so any $\varepsilon \in \{0, \ldots, p^{k-1}\}$ is a zero of $f(\zeta + p\varepsilon)$ and therefore we have that ζ has p^{k-1} lifts.

The key idea of the randomized algorithm is that counting the number of roots when s = 1 and s = k is simple, as described above, and we can reduce all the computations to these two cases using recursion. If $s \in \{2, \ldots, k-1\}$, we can reapply the algorithm to an instance of counting roots for the polynomial $\frac{f(\zeta)}{p^s} + \frac{f'(\zeta)}{p^{s-1}}\varepsilon + \cdots + \frac{f^{\min(d,k-1)}(\zeta)}{(\min(d,k-1)!p^{s-\min(d,k-1)}}\varepsilon^{\min(d,k-1)}$ in $\mathbb{Z}/(p^{k-s})$. Eventually this will reduce to the case where either s = 1 or s = k and the recursion will terminate, giving us that the root ζ of f mod p has a total number of p^{s-1} . (the number of roots of $\frac{f(\zeta)}{p^s} + \frac{f'(\zeta)}{p^{s-1}}\varepsilon + \cdots + \frac{f^{\min(d,k-1)}(\zeta)}{(\min(d,k-1)!p^{s-\min(d,k-1)}}\varepsilon^{\min(d,k-1)} \mod p^{k-s}$) lifts to roots in $\mathbb{Z}/(p^k)$.

Algorithm 1 Randomized Prime Power Root Counting

- 1: function COUNT $(f \in \mathbb{Z}[x])$ has degree d and is not identically 0 mod p, prime p, $k \in \mathbb{N}$ such that $k \geq 2$)
- 2: Factor f as in [3]
- 3: count := number of distinct linear factors of multiplicity $1 \triangleright$ These roots in $\mathbb{Z}/(p)$ can be lifted uniquely to roots in $\mathbb{Z}/(p^k)$.
- 4: Push $\{\zeta_0 \in \{0, \dots, p-1\} | f(\zeta_0) = f'(\zeta_0) = 0 \mod p \text{ and } f(\zeta_0) = 0 \mod p^2 \}$ onto a stack S

```
5: while S \neq 0 do
```

6: Pop a root ζ_0 from the stack and define $s(0,\zeta_0) :=$ maximal integer such that $p^{s(0,\zeta_0)}$ divides each of $f(\zeta_0), f'(z_0)p\varepsilon, \ldots, \frac{f^{\min(d,k-1)(\zeta_0)}}{\min(d,k-1)!}p^{\min(d,k-1)}$

if $s(0, \zeta_0) = k$ then 7: $count \leftarrow count + p^{k-1}$ 8: else 9: Define $f_{\zeta_0}(x) := \frac{1}{p^{s(0,\zeta_0)}} f(\zeta_0 + px)$ 10: $count \leftarrow count + p^{s(0,\zeta_0)-1} \text{COUNT}(f_{\zeta_0}(x), p, k - s(0,\zeta_0))$ 11:end if 12:end while 13:return count 14:15: end function

Since the non-degenerate roots of the mod p reduction of f have a unique lift by Hensel's Lemma, we only need to keep track of the degenerate roots. Our recurrence takes a degenerate root ζ_0 as a point in a cluster of roots of f in $\mathbb{Z}/(p^k)$ and recovers the other points in this cluster by expanding ζ_0 to more digits base-p. In this way, we count the number of roots of f in $\mathbb{Z}/(p^k)$ by counting the number of lifts from each root ζ_i of f in $\mathbb{Z}/(p)$.

3 Discussion of Complexity Bound and Experimental Data

Figure 1: Diagram of complexity tree

In the Figure 1, we see the basic tree structure of the algorithm. We need only keep track of the degenerate roots of f; the degenerate roots of f, denoted by ζ_i , become the children

nodes from which more branching occurs. The depth and branching of our recurrence tree is strongly limited by the value of k and the degree of f. For the initial parent node, the total number of degenerate roots is less than or equal to $\frac{d}{2}$, and for each subsequent child node, the total number of degenerate roots is less than or equal to $\frac{s(i,\zeta_i)-d_{f_{\zeta_i}}}{2}$. Non-degenerate roots have a unique lift by Hensel's Lemma, so non-degenerate roots require no additional computations and are therefore shown on the left of the tree. We also see that we have a maximum of $s(1,\zeta_1)\cdots s(l,\zeta_l)$ nodes at the bottom level of the tree.

We use Kedlaya-Umans fast $\mathbb{Z}/(p)[x]$ factoring algorithm found in [3], which takes time $d^{1.5+o(1)}(\log p)^{1+o(1)} + d^{1+o(1)}(\log p)^{2+o(1)}$ for a degree d polynomial, in order to factor the polynomials at each node in $\mathbb{Z}/(p)$. In simplest terms, we can consider our total complexity as being less than or equal to (the number of nodes in the recursion tree) × (the complexity of factoring over $\mathbb{Z}/(p)[x]$). Optimizing parameters, the worst case occurs when $d \approx e \approx 2.71828$ and the depth of the tree is $\frac{k}{e}$. The final complexity of the randomized algorithm is given by

$$(d^{1.5}\log p)^{1+o(1)} + (d\log^2 p)^{1+o(1)} + [(\min\{d, k-1\}^{1.5}\log p)^{1+o(1)} + (\min\{d, k-1\}\log^2 p)^{1+o(1)}](e/2)^{\lfloor k/e \rfloor},$$

where $(e/2)^{\lfloor k/e \rfloor} \approx 1.12^k$.

Based on this complexity bound, we expect to see time improvements even for p as small as 2 when compared to brute-force counting since brute-force counting takes time approximately p^k , giving us that brute-force takes time approximately 2^k for p = 2, while the randomized algorithm takes time approximately 1.12^k . More details regarding computational time with p = 2 are given in Tables 1 and 2.

We now present computational data which illustrates the advantages to using the randomized algorithm over the brute force method. The brute force method takes a polynomial f, a prime p, and a power k, and evaluates f at each value i from 0 to $p^k - 1$. If f(i) is identically equal to 0 (mod p^k), then that contributes to the total number of roots of $f \in \mathbb{Z}/(p^k)$. We start by comparing the run times of the brute force algorithm and the randomized algorithm for p = 2.

Table 1 displays the average difference in computation time for the number of roots of 100 random polynomials of degree less than or equal to 100 in $\mathbb{Z}/(2^k)$ for the given k, between brute force and the randomized algorithm (negative implies brute force was faster). The times are shown in seconds. In general, a single computation took less than a second, so differences in the milliseconds are not insignificant. From the table, we see a switch from brute-force being more efficient to the randomized algorithm being more efficient at k = 10, and the difference becomes more pronounced as k increases.

k	8	9	10	11	15
Avg Diff (in seconds)	-0.0011	-0.00029	0.0028	0.01701	0.32499

Table 1: Average Difference in Run Times for 100 random polynomials with p = 2, taken as (time of brute-force)-(time of randomized algorithm)

f	p	k	Brute Force	Randomized Algorithm
$-71x^4 + 21x^3 - 84x^2 - 47x + 63$	2	5	0 ns	0 ns
$21x^5 - 66x^4 - 24x^3 - 88x^2 - 17x - 32$	2	6	0 ns	$1000.00 \ \mu s$
$-75x^6 + 82x^5 - 93x^4 - 19x^3 + 3x + 65$	2	7	1000.00 $\mu {\rm s}$	1000.00 μs
$x^7 + x^6 + 62x^5 - 23x^3 - 58x - 66$	2	8	1000.00 $\mu {\rm s}$	1000.00 μs
$48x^8 - 23x^6 + 90x^5 - 19x^3 + 31x + 7$	2	9	$3.00 \mathrm{ms}$	1000.00 μs
$80x^8 - 37x^7 - 89x^6 + 58x^3 + 32x^2 - 61$	2	10	$5.00 \mathrm{\ ms}$	0 ns
$-52x^8 + 51x^6 - 75x^5 + 23x^3 - 27x^2 - 38x$	2	11	11.00 ms	3.00 ms
$61x^{10} - 80x^9 - 17x^6 - 90x^5 + 13x^4 + 68$	2	12	$51.00 \mathrm{ms}$	2.00 ms
$18x^{10} + 51x^8 + 49x^6 + 34x^5 - 64x^2 + 70$	2	13	$35.00 \mathrm{ms}$	2.00 ms
$89x^{12} - 56x^9 + 73x^5 - x^4 + 80x^3 + 69x^2$	_	14	$75.00 \mathrm{\ ms}$	6.00 ms
$-93x^{10} - 36x^6 + 53x^5 - 78x^4 - 67x^2 + 88$	2	15	212.00 ms	2.00 ms

Table 2: Run times for $5 \le k \le 15, d < k - 1$

Table 2 shows the difference in computational time with specific examples, giving an idea of the overall time it takes for both the randomized algorithm and brute-force to run when p = 2. The difference in computational run time becomes more noticeable when we introduce larger primes.

$\int f$		k	Brute Force	Randomized Algorithm
$-44x^{84} + 71x^{83} - 17x^{67} - 75x^{49} - 10x^{11} - 7$	211	3	92.19 sec	11.00ms
			$65.83 \min$	1000.00 μs
$\begin{bmatrix} -15x^{99} - 59x^{74} - 96x^{29} + 72x^{28} - 87x^{27} + 47x^3 \end{bmatrix}$	1049	3	3.81 hours	1000.00 μs

Table 3: Run times for p with at least 3 digits

Table 3 illustrates the advantages of using the randomized algorithm over brute-force for computations involving large prime numbers. Table 4 displays the run times for the randomized algorithm for prime numbers with at least four digits. We begin to see a very significant difference between brute force and the randomized algorithm for large primes; it took the brute force method almost 4 hours to count the number of roots of a polynomial in $\mathbb{Z}/(p^k)$ when p was a 4 digit prime number, while the randomized algorithm counted the roots of a polynomial in $\mathbb{Z}/(p^k)$ when p was a 9 digit prime in approximately a minute and a half.

f	p	k	t
$-56x^{76} + 73x^{64} - x^{57} + 80x^{40} + 69x^{35} + 76x$	8713	3	2.00ms
$53x^{94} - 78x^{37} - 67x^{27} + 88x^{26} - 5x^9 - 36x^8$	13177	3	4.00ms
$55x^{98} - 49x^{74} + 86x^{60} - 23x^{43} + 17x^{19} + 31x^2$	95213	3	27.00ms
$35x^{93} + 34x^{84} - 14x^{56} - 92x^{54} - 90x^{27} - 32x^2$	104729	3	29.00ms
$62x^{78} - 31x^{57} + 57x^{21} + 98x^{16} - 80x^6 - 51x^5$	15485863	3	5.08s
$-40x^{90} - 10x^{81} + 67x^{69} - 40x^{41} - 82x^{36} - 82x^{6}$	104395301	3	41.49s
$-80x^{87} - 72x^{70} + 36x^{60} + 71x^{52} + 54x^{38} + 84x^{12}$	179424673	3	92.51s

Table 4: Run times for the randomized algorithm when p has ≥ 4 digits

We expect the randomized algorithm to take the longest when a polynomial has many degenerate roots because a polynomial of this type will require many recursive calls. Polynomials with many degenerate roots do take longer than a random polynomial, but overall the randomized algorithm still outperforms other methods. For instance, counting roots of the 55 degree polynomial $(x - 1)(x - 2)^2 \cdots (x - 10)^{10}$ in $\mathbb{Z}/(31^{10})$ took 6.4 seconds using the randomized algorithm, while counting roots in the same ring with a random polynomial of the same degree took only 1 millisecond. Despite this slowdown for polynomials with very degenerate roots, the randomized algorithm still outperforms other methods; counting roots of a polynomial in just $\mathbb{Z}/(31^6)$ using brute force took 2.7 hours.

4 Bound on Number of Roots

Lemma 4.1. If a root ζ of the mod p reduction of f has multiplicity j, then $s_{\zeta} \leq j$, where s_{ζ} is the greatest integer such that $p^{s_{\zeta}}$ divides each of $f(\zeta), \ldots, \frac{f^{(k-1)}(\zeta)}{(k-1)!}p^{k-1}\varepsilon^{k-1}$.

Proof. If ζ has multiplicity j, then $f(\zeta) = \cdots = f^{j-1}(\zeta) = 0 \pmod{p}$, but $f^{(j)}(\zeta) \neq 0 \pmod{p}$. So $\frac{f^j(\zeta)}{j!}p^j$ is divisible by p^j but not p^{j+1} and therefore $s_{\zeta} \leq j$.

Theorem 4.2. Let p be a prime, $f \in \mathbb{Z}[x]$ a polynomial of degree d, and $k \in \mathbb{N}$ such that $d \geq k \geq 2$. Then $N_f(p, d, k) \leq \min\{d, p\}p^{k-1}$, where $N_f(p, d, k)$ denotes the number of roots of f in $\mathbb{Z}/(p^k)$.

Proof. Let $\zeta_i \in \{0, \ldots, p-1\}$ be any root of the mod p reduction of f, and let $s(i, \zeta_i)$ be the greatest integer such that $p^{s(i,\zeta_i)}$ divides each of $f(\zeta_i), \ldots, \frac{f^{\min(d,k-1)}(\zeta_i)}{\min(d,k-1)!}p^{k-1}$. Set $f_{\zeta_i}(x) = \frac{1}{p^{s(i,\zeta_i)}}f(\zeta_i+px)$. Clearly, we have that $N_f(p, d, 1) \leq \min\{d, p\}$. We know from Lemma 4.1 that if $\zeta_i \in \mathbb{Z}/(p)$ is a root of multiplicity J, then $J \leq s$. Let δ_1 denote the number of non-degenerate roots of $f \mod p$. From this, we see that

$$N_f(p, d, k) \leq \delta_1 + \sum_{J=2}^{\min(d, k-1)} \sum_{\zeta_i \text{ with } s(i, \zeta_i) = J} p^{s(i, \zeta_i) - 1} \cdot N_{f_{\zeta_i}}(p, k-1, k - s(i, \zeta_i)) + \sum_{\zeta_i \text{ with } s(i, \zeta_i) = k} p^{k-1}.$$

Considering that $N_{f_{\zeta_i}}(p, k-1, k-s(i, \zeta_i)) \leq p^{k-s(i, \zeta_i)}$, we get

$$N_{f}(p, d, k) \leq \sum_{J=1}^{\min(d, k-1)} \sum_{\zeta_{i} \text{ with } s(i, \zeta_{i})=J} p^{s(i, \zeta_{i})-1} \cdot p^{k-s(i, \zeta_{i})} + \sum_{\zeta_{i} \text{ with } s(i, \zeta_{i})=k} p^{k-1},$$

$$N_{f}(p, d, k) \leq \sum_{J=1}^{\min(d, k-1)} \sum_{\zeta_{i} \text{ with } s(i, \zeta_{i})=J} p^{k-1} + \sum_{\zeta_{i} \text{ with } s(i, \zeta_{i})=k} p^{k-1},$$

$$N_{f}(p, d, k) \leq \sum_{J=1}^{k} \sum_{\zeta_{i} \text{ with } s(i, \zeta_{i})=J} p^{k-1}.$$

Since the number of distinct roots of the mod p reduction of f is less than $\min\{d, p\}$, we get that $N_f(p, d, k) \leq \min\{d, p\}p^{k-1}$, as desired.

Examples of polynomials with more than $\lfloor \frac{d}{k} \rfloor p^{k-1}$ roots are given below. These examples show that our bound is within a factor of k of optimality when $d \leq p$.

Example 4.3. $(x-2)^7(x-1)^3$ with p = 17, k = 7 has 24, 221, 090 roots, which is greater than $\lfloor \frac{d}{k} \rfloor p^{k-1} = 24, 137, 569.$

Example 4.4. $(x-1)^k x$ has $p^{k-1} + 1$ roots when $d = k+1 \le p$.

The following examples show that we can have p^k roots when $d \ge p$.

Example 4.5. $(x^p - x)^k$ is a polynomial of degree pk with p^k roots in $\mathbb{Z}/(p^k)$.

Example 4.6. $(x^{p^k-p^{k-1}}-1)x^k$ has degree $p^k-p^{k-1}+k$ and also vanishes on all of $\mathbb{Z}/(p^k)$.

Theorem 4.7. Let p be a prime and $f \in \mathbb{Z}[x]$ a polynomial of degree d such that $d \geq 2$. Then the number of roots of f in $\mathbb{Z}/(p^2)$ is less than or equal to $\min\{\lfloor \frac{d}{2} \rfloor, p\}p + (d \mod k)$, and this bound is sharp.

Proof. Let $\zeta_i \in \{0, \ldots, p-1\}$ be any root of the mod p reduction of f, and let $s(i, \zeta_i)$ be the greatest integer such that $p^{s(i,\zeta_i)}$ divides each of $f(\zeta_i), \ldots, \frac{f^{\min(d,k-1)}(\zeta_i)}{\min(d,k-1)!}p^{k-1}$. Let δ_1 denote the number of roots of f in $\mathbb{Z}/(p)$ with $s(i,\zeta_i) = 1$, and let δ_2 denote the number of roots of f in $\mathbb{Z}/(p)$ with $s(i,\zeta_i) = 2$. We know that $\delta_1 + 2\delta_2 \leq d$ and that $\delta_2 \leq \lfloor \frac{d}{2} \rfloor$ by Lemma 4.1. Using this,

$$\begin{split} N_f(p,d,2) &\leq \delta_1 + p\delta_2, \\ N_f(p,d,2) &\leq (d-2\delta_2) + p\delta_2, \\ N_f(p,d,2) &\leq (d-2\lfloor \frac{d}{2} \rfloor) + \lfloor \frac{d}{2} \rfloor p, \\ N_f(p,d,2) &\leq \lfloor \frac{d}{2} \rfloor p + (d \bmod 2). \end{split}$$

To show that this bound is sharp, we give several examples below for which this bound equals the number of roots of f in $\mathbb{Z}/(p^2)$.

Example 4.8. With p = 5, the degree 3 polynomial $(x - 1)^2 x$ has $\lfloor \frac{3}{2} \rfloor \cdot 5 + (3 \mod 2) = 6$ roots in $\mathbb{Z}/(p^2)$.

Example 4.9. In general, for $i, j \in \mathbb{Z}/(p)$ such that $i \neq j$, the polynomial $(x-i)^2(x-j)$ has $\lfloor \frac{d}{2} \rfloor p + (d \mod 2)$ roots in $\mathbb{Z}/(p^2)$ when $d \geq 2$ and $\lfloor \frac{d}{2} \rfloor \leq p$.

5 Acknowledgements

We would like to thank our advisor, Dr. J. Maurice Rojas, for his assistance and guidance; we would also like to thank Yuyu Zhu for all the suggestions and advice she gave us. We also thank Texas A&M University for hosting and the National Science Foundation (NSF) for funding this program.

References

- Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
- [2] Qi Cheng; Shuhong Gao; J. Maurice Rojas; and Daqing Wan, "Counting Roots for Polynomials Modulo Prime Powers," Proceedings of ANTS XIII (Algorithmic Number Theory Symposium, July 1620, 2018, University of Wisconsin, Madison), to appear.
- [3] Kiran Kedlaya and Christopher Umans, "Fast polynomial factorization and modular composition," SIAM J. Comput., 40 (2011), no. 6, pp. 17671802.
- [4] Qi Cheng, "Primality Proving via One Round in ECPP and One Iteration in AKS," Journal of Cryptology, July 2007, Volume 20, Issue 3, pp. 375387
- [5] Ivan Niven; Herbert S. Zuckerman; and Hugh L. Montgomery, An Introduction to the Theory of Numbers. John Wily & Sons, Inc., 1991.