A Faster Randomized Algorithm for Root Counting in
Prime Power Rings

Leann Kopp and Natalie Randall
July 17, 2018

Abstract

Let p be a prime and f € Z[x] a polynomial of degree d such that f is not identically
zero mod p. We introduce a Las Vegas randomized algorithm to count the number of
roots of f in Z/(p*) for k € N with k > 2 which runs in time d*5+t°()(log p)2te(1)1.12%,
We compare the randomized algorithm to simple brute force to see when we have practical
time gains. In addition, we present an upper bound on the number of roots of f (as a
function of p, k, and the degree of f) that is optimal for k = 2.

1 Introduction

A deterministic algorithm for counting roots in Z/(p*) in time (dlog(p) + 2¢)°™) is given in [2].
Here we propose a Las Vegas randomized algorithm which runs in time d*5+°(!) (log p)?*to()1.12F.
By “Las Vegas randomized,” we mean that our algorithm undercounts roots with a fixed
error probability but otherwise returns a correct root count and always correctly announces
failure. For instance, if we take our fixed error probability to be %, we can get an overall
failure probability of less than 31% by running the algorithm 100 times. Las Vegas randomized
algorithms are common across algorithmic number theory; there are fast, widely accepted Las
Vegas randomized algorithms for checking primality and for factoring polynomials over finite
fields [1, 3, 4]. In our algorithm, we introduce randomization by using fast factorization (see
[3]) to find roots of f in Z/(p).

Prior to the deterministic algorithm in [2] there was little information on counting the
roots of a polynomial over prime power rings. We can easily count the number of roots of a
polynomial f in Z/(p) by taking the degree of ged(z? — x, f), but this method relies on Z/(p)
being a unique factorization domain, and Z/(p*) is not a unique factorization domain for k > 1.
To overcome this issue, we consider the Taylor expansion of our polynomial f about a root
¢ of the mod p reduction of f with a perturbation of pe, where ¢ € {0,...,p* — 1}. From
this expansion, we can divide by certain powers of p in order to recursively isolate the roots of
f in the ring Z/(p*). From a similar expansion, we also get an upper bound for the number
of roots of f in Z/(p*) given by min{d, p}p*~! and a sharp upper bound for k = 2 given by
min{[%], p}p* + (d mod 2).

2 Background and Randomized Algorithm
Lemma 2.1 (Hensel’'s Lemma). If f € Z[z] is a polynomial with integer coefficients, p is

prime, and (; € {0,...,p’ 7! — 1} is a root of f (mod p’) and f'(¢;) # 0 (mod p), then there
is a unique ¢ € {0,...,p” ™ — 1} with f(¢) =0 (mod p/*') and ¢ = ¢; (mod p”).

We will see below that we can use Hensel’s Lemma to determine the number of lifts of a
root ¢; with s(7,(;) = 1.
Consider the expansion of f given by

min(d,k—1) min - min _
f(¢ + pe) Zf(C)+f’(C)p8+---+frmTk_l(f)p (k=1 gmin(@k=1) mod p*,
(d,k—1)

where ¢ is a root of the mod p reduction of f. Let s € {1,...,k} be the maximal

integer such that p* divides each of f(¢), f'(Op,..., %prﬂi“(d’k_l). More precisely,

fmin(d,kfl)(()

s = min{ord,(f(C)), ord,(f'({)p), ... ,ordp(mpmi“(d’k_l))}, where ord,(z) refers to the
p-adic valuation of x. If f({ + pe) =0 (mod p*), then we can write

min(d,k—1) _
p (00 + L 1+ et e) = 0 mod p,
which is true if and only if
/ min(d,k—1) _ _s
% + %5 +o (mm(dfk Dips— rn(fl)(dk 1)‘€mm(dJg D= 0 mod pk

In the case where s = 1, if f/(¢) = 0 mod p then we must have that p? { f(¢) and so ¢ has no
lifts mod p*; however, if f/(¢) # 0 mod p, then ¢ lifts to one unique root by Hensel’s Lemma. In

the case where s = k, the entire expression ps(% + %5_’" cot (min(df:m;; ks 1')11(13)(01 =) gmin(dk—1))
vanishes identically mod p*, so any € € {0,...,p* !} is a zero of f(¢ + pe) and therefore we
have that ¢ has p*~! lifts.

The key idea of the randomized algorithm is that counting the number of roots when
s = 1 and s = k is simple, as described above, and we can reduce all the computations to

these two cases using recursion. If s € {2,.. — 1}, we can reapply the algorithm to an
min()
instance of counting roots for the polynomial f + ! S(C)s ot df T 1; kg 1m(§])(d — l)emm(d’k’l)

in Z/(p*=*). Eventually this will reduce to the case where either s = 1 or s = k and the
recursion will terminate, giving us that the root ¢ of f mod p has a total number of p*~!- (the

min(d,k—1) . _
number of roots of f O 4+ L (Cl)g N (min(d{k—1)!p8*m(i§1)(d,k71) min(d,k—1)
in Z/(p*).

Algorithm 1 Randomized Prime Power Root Counting

€ mod p*~*) lifts to roots

1: function COUNT(f € Z|x] has degree d and is not identically 0 mod p, prime p, k € N
such that k£ > 2)

2: Factor f as in [3]

3: count := number of distinct linear factors of multiplicity 1 > These roots in Z/(p) can
be lifted uniquely to roots in Z/(p*).

4. Push {{ €{0,...,p—1}f(¢) = () = 0 mod p and f(¢p) = 0 mod p*} onto a stack
S

o

while S # 0 do
Pop a root (, from the stack and define 5(0, ;) := maximal integer such that p*(®:<)

divides each of f((o), f'(20)pe, - . ., frntEZDE0) min(d,k—1)

>

min(d,k—1)!

7: if s(0,¢(y) = k then

8: count < count + p*~1

9: else
10: Define f,(z) == mf(@ + px)
11: count < count + p*®©)"LcouNT(fe, (), p, k — (0, (o))
12: end if
13: end while
14: return count

15: end function

Since the non-degenerate roots of the mod p reduction of f have a unique lift by Hensel’s
Lemma, we only need to keep track of the degenerate roots. Our recurrence takes a degenerate
root (y as a point in a cluster of roots of f in Z/(p*) and recovers the other points in this
cluster by expanding (, to more digits base-p. In this way, we count the number of roots of f
in Z/(p*) by counting the number of lifts from each root (; of f in Z/(p).

3 Discussion of Complexity Bound and Experimental
Data

d non-degenerate
roots of f mod p

d, non-degenerate
roots of fz, (¢) mod p

.
~,
~,
~,
SS
~,

pS(i.Zz)le
identically zero
mod pk = p*-1

N
~.
~,
S
~.

d, non-degenerate
roots of fz_(¢) mod p

N
\\\\\\
. ~

~\
N

.o
~,

ps(“i)le
identically zero
mod pk = pk-1

d; non-degenerate
roots of fz (¢) mod p fCl (8)

Figure 1: Diagram of complexity tree

In the Figure 1, we see the basic tree structure of the algorithm. We need only keep track
of the degenerate roots of f; the degenerate roots of f, denoted by (;, become the children

nodes from which more branching occurs. The depth and branching of our recurrence tree is
strongly limited by the value of k£ and the degree of f. For the initial parent node, the total

number of degenerate roots is less than or equal to g, and for each subsequent child node, the

. (‘7<i)_d .
total number of degenerate roots is less than or equal to SZT& Non-degenerate roots have

a unique lift by Hensel’s Lemma, so non-degenerate roots require no additional computations
and are therefore shown on the left of the tree. We also see that we have a maximum of
s(1,¢1) - - s(l,(;) nodes at the bottom level of the tree.

We use Kedlaya-Umans fast Z/(p)[x] factoring algorithm found in [3], which takes time
d">+oM) (log p) oM 4 @+°M (log p)>+°M) for a degree d polynomial, in order to factor the poly-
nomials at each node in Z/(p). In simplest terms, we can consider our total complexity as
being less than or equal to (the number of nodes in the recursion tree) x (the complexity of
factoring over Z/(p)[x]). Optimizing parameters, the worst case occurs when d ~ e &~ 2.71828
and the depth of the tree is f The final complexity of the randomized algorithm is given by

(d"*log p)+oW) 4 (dlog?® p)') + [(min{d, k — 1}'*log p)') + (min{d, k —
1} log? p) oM (e/2) /el

where (e/2)F/¢) ~ 1.12F

Based on this complexity bound, we expect to see time improvements even for p as small as
2 when compared to brute-force counting since brute-force counting takes time approximately
p¥, giving us that brute-force takes time approximately 2* for p = 2, while the randomized
algorithm takes time approximately 1.12%. More details regarding computational time with
p = 2 are given in Tables 1 and 2.

We now present computational data which illustrates the advantages to using the random-
ized algorithm over the brute force method. The brute force method takes a polynomial f, a
prime p, and a power k, and evaluates f at each value i from 0 to p* — 1. If f(i) is identically
equal to 0 (mod p¥), then that contributes to the total number of roots of f € Z/(p*). We
start by comparing the run times of the brute force algorithm and the randomized algorithm
for p = 2.

Table 1 displays the average difference in computation time for the number of roots of 100
random polynomials of degree less than or equal to 100 in Z/(2%) for the given k, between
brute force and the randomized algorithm (negative implies brute force was faster). The times
are shown in seconds. In general, a single computation took less than a second, so differences
in the milliseconds are not insignificant. From the table, we see a switch from brute-force being
more efficient to the randomized algorithm being more efficient at £ = 10, and the difference
becomes more pronounced as k increases.

k 8 9 10 11 15
Avg Diff (in seconds) | -0.0011 | -0.00029 | 0.0028 | 0.01701 | 0.32499

Table 1: Average Difference in Run Times for 100 random polynomials with p = 2, taken as (time of brute-
force)-(time of randomized algorithm)

H /

p k Brute Force Randomized Algorithm H
—T1z* 4+ 212° — 8422 — 47x + 63 2 5 0 ns 0 ns
212° — 662* — 242 — 882? — 172 — 32 2 6 0 ns 1000.00 ps
— 7525 + 822° — 932* — 192> + 32 + 65 2 7 1000.00 ps 1000.00 us
" + 2% 4 622° — 232% — 58z — 66 2 8 1000.00 ps 1000.00 us
48x% — 232°% +902° — 1923 + 312 + 7 2 9 3.00 ms 1000.00 pus
80x% — 372" — 892° + 5823 + 3222 —61 2 10 5.00 ms 0 ns
—522% 4+ 512% — 7Hx° + 2323 — 272° — 38z 2 11 11.00 ms 3.00 ms
61x'% —802Y — 172% — 902° + 132* +68 2 12 51.00 ms 2.00 ms
18210 + 512% + 4925 + 342° — 6422 +70 2 13 35.00ms 2.00 ms
8922 — 562” + 732° — 2% +802% + 6922 2 14 75.00 ms 6.00 ms
—93210 — 3625 + 53x° — 78z* — 6722 +88 2 15 212.00 ms 2.00 ms

Table 2: Run times for 5 < k<15, d<k—1

Table 2 shows the difference in computational time with specific examples, giving an idea
of the overall time it takes for both the randomized algorithm and brute-force to run when
p = 2. The difference in computational run time becomes more noticeable when we introduce
larger primes.

H f p k Brute Force Randomized Algorithm H
— 4423 + 7128 — 172%7 — 7524 — 102 — 7 211 3 92.19 sec 11.00ms
—102% + 312%2 — 5125 + 772°° + 9528 + 2% 701 3 65.83 min 1000.00 us
—152% — 592™ — 962% + 722%8 — 872 + 4723 1049 3 3.81 hours 1000.00 ps

Table 3: Run times for p with at least 3 digits

Table 3 illustrates the advantages of using the randomized algorithm over brute-force for
computations involving large prime numbers. Table 4 displays the run times for the randomized
algorithm for prime numbers with at least four digits. We begin to see a very significant
difference between brute force and the randomized algorithm for large primes; it took the
brute force method almost 4 hours to count the number of roots of a polynomial in Z/(p¥)
when p was a 4 digit prime number, while the randomized algorithm counted the roots of a
polynomial in Z/(p*) when p was a 9 digit prime in approximately a minute and a half.

H / P k

—56270 + 7325 — 2°7 + 8020 + 692%° + 762 8713 3

53274 — 78237 — 672%7 + 88220 — 529 — 362° 13177 3
55298 — 492 4 8620 — 2321 + 1721 4 3122 95213 3 27.00ms

3

3

3

3

3529 + 3428* — 142°0 — 922°* — 90227 — 3222 104729 29.00ms

622" — 312°7 4+ 572t + 98216 — 802% — 512° 15485863 5.08s
—402% — 1028 + 672%7 — 402% — 822%0 — 8245 104395301 41.49s
—802% — 72270 4 36250 + 71252 + 54238 + 8422 179424673 92.51s

Table 4: Run times for the randomized algorithm when p has > 4 digits

We expect the randomized algorithm to take the longest when a polynomial has many de-
generate roots because a polynomial of this type will require many recursive calls. Polynomials
with many degenerate roots do take longer than a random polynomial, but overall the random-
ized algorithm still outperforms other methods. For instance, counting roots of the 55 degree
polynomial (z — 1)(x — 2)?--- (z — 10)'° in Z/(31'%) took 6.4 seconds using the randomized
algorithm, while counting roots in the same ring with a random polynomial of the same degree
took only 1 millisecond. Despite this slowdown for polynomials with very degenerate roots,
the randomized algorithm still outperforms other methods; counting roots of a polynomial in
just Z/(31%) using brute force took 2.7 hours.

4 Bound on Number of Roots

Lemma 4.1. If a root ¢ of the mod p reduction of f has multiplicity j, then s, < j, where s,
FETDQ) k=1 k-1

is the greatest integer such that p* divides each of f((),..., P
Proof. If ¢ has multiplicity j, then f(¢) = --- = f/~(¢) = 0 (mod p), but f9(¢) # 0 (mod p).
So f]]—(,op] is divisible by p? but not p/™ and therefore s¢ < j. O

Theorem 4.2. Let p be a prime, f € Z[z] a polynomial of degree d, and k € N such that
d >k > 2. Then N¢(p,d, k) < min{d, p}p"~', where N;(p,d, k) denotes the number of roots
of fin Z/(p*).

Proof. Let (; € {0,...,p — 1} be any root of the mod p reduction of f, and let s(i,(;) be
the greatest integer such that p*>%) divides each of f((;),. .. L DG k-1 Get fe(z) =

> min(d,k—1)! p
—=f(¢; + px). Clearly, we have that Ny(p,d, 1) < min{d,p}. We know from Lemma 4.1 that

if (; € Z/(p) is a root of multiplicity J, then J < s. Let d; denote the number of non-degenerate
roots of f mod p. From this, we see that

Ny(p,d, k) <
min(dlc 1) s(i,¢)— . —
h+> - Zg with s(i,¢;)=J P (et Nf(i (p, b — 1,k —s(i,G)) + Zgi with s(i,¢;)=k pH
Considering that Ny (p,k — 1,k —s(i, () < pF=0:%) | we get

min(d,k—1) s(i.C:)— e —
Ni(p,d, k) <)= (Zgi with s(i,¢;)=J P () =L ph=s(iG) 4 Zg with s(3,¢;)=k PP
min(d,k—1) — —
N (p7 d k) < Z (ch with S(i,(i)ZJ pk ! + ch with s(i,Q):k pk !
Nf(p7 da k) < ZJ:I ZQ with s(i,(i)Zka_l‘

Since the number of distinct roots of the mod p reduction of f is less than min{d, p}, we get

that Nt (p, d, k) < min{d,p}p*~!, as desired. O
Examples of polynomials with more than L%j p*~! roots are given below. These examples
show that our bound is within a factor of k£ of optimality when d < p.

Example 4.3. (z —2)7(x —1)3 with p = 17,k = 7 has 24,221, 090 roots, which is greater than
[¢]pMt = 24,137, 569.

Example 4.4. (x — 1)¥z has p*~! + 1 roots when d = k + 1 < p.

The following examples show that we can have p* roots when d > p.

Example 4.5. (27 — x)* is a polynomial of degree pk with p* roots in Z/(p").

1

Example 4.6. (27" 7" — 1)z* has degree p* — p*~! 4 k and also vanishes on all of Z/(p¥).

6

Theorem 4.7. Let p be a prime and f € Z[z] a polynomial of degree d such that d > 2. Then
the number of roots of f in Z/(p?) is less than or equal to min{| 2|, p}p + (d mod k), and this
bound is sharp.

Proof. Let (; € {0,...,p — 1} be any root of the mod p reduction of f, and let s(i,(;) be the

greatest integer such that p*®%) divides each of f((;),. .., %pk_l. Let §; denote the
number of roots of f in Z/(p) with s(i,(;) = 1, and let d5 denote the number of roots of f in
Z/(p) with s(i,¢;) = 2. We know that &; + 265 < d and that 6, < || by Lemma 4.1. Using

this,

Nf(p7d72) Sél +p527
Nf(p> d7 2) < (d - 252) +p527
Nf(p7d> 2) < (d_ 2|_%lJ> + Lng,

N¢(p,d,2) < [2]p + (d mod 2).

To show that this bound is sharp, we give several examples below for which this bound equals
the number of roots of f in Z/(p?). O

Example 4.8. With p = 5, the degree 3 polynomial (z — 1)%z has [2] -5+ (3mod 2) = 6
roots in Z/(p?).

Example 4.9. In general, for i, j € Z/(p) such that i # j, the polynomial (z —4)%(z — j) has
[2|p + (d mod 2) roots in Z/(p?) when d > 2 and |2] < p.

5 Acknowledgements

We would like to thank our advisor, Dr. J. Maurice Rojas, for his assistance and guidance;
we would also like to thank Yuyu Zhu for all the suggestions and advice she gave us. We
also thank Texas A&M University for hosting and the National Science Foundation (NSF) for
funding this program.

References

[1] Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. 1: FEfficient Algorithms,
MIT Press, Cambridge, MA, 1996.

[2] Qi Cheng; Shuhong Gao; J. Maurice Rojas; and Daqing Wan, “Counting Roots for
Polynomials Modulo Prime Powers,” Proceedings of ANTS XIII (Algorithmic Number
Theory Symposium, July 1620, 2018, University of Wisconsin, Madison), to appear.

[3] Kiran Kedlaya and Christopher Umans, “Fast polynomial factorization and modular com-
position,” SIAM J. Comput., 40 (2011), no. 6, pp. 17671802.

[4] Qi Cheng, “Primality Proving via One Round in ECPP and One Iteration in AKS,”
Journal of Cryptology, July 2007, Volume 20, Issue 3, pp. 375387

[5] Ivan Niven; Herbert S. Zuckerman; and Hugh L. Montgomery, An Introduction to the
Theory of Numbers. John Wily & Sons, Inc., 1991.

