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First Steps

The full definition of a modular tensor category is to long to give
here. We outline the most important details[Row1]:

I The category contains finitely (r) many simple objects (up to
isomorphism). r is called the rank of the category. We’ll label
them by l ∈ 0, 1, . . . , r − 1, with simple objects Xl

I There exist a direct sum and a tensor product, and they
behave reasonably.

I For any two objects Xi ,Xj ,

Xi ⊗ Xk
∼=
∑
k

Nk
i ,jXk Nk

i ,j ∈ N

I The (semi)ring generated by the Xi with ⊗,⊕ is called the
fusion algebra of the category.
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More on modular categories

I We can assemble the Nk
i ,j into r matrices (Nk) called the

fusion matrices, where the i , j entry of Nk is Nk
i ,j .

I The Nk commute, and are integer matrices so their
characteristic polynomials have integer coefficients.

I The Xi also have a distinguished endomorphism, which may
be identified with a complex number θi . The diagonal matrix
T , with Tii = θi is called the T -matrix of the category.

I X0 is special. N0 = I , and θ0 = 1.

I There is an S matrix as well, but defining it will take too long.
We’ll list some of its properties later.

I The pair (S ,T ) is called the modular data of the category.
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Goal

Any modular tensor category has an associated Galois group,
which sometimes gives enough information to classify the modular
data that can occur completely.We’ll do the rank 6 case, where the
Galois group is 〈(012)(345)〉, with an eye towards the related
〈(012)〉 case.
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A bit on modularity

The reason the adjective modular appears here is that S and T
define a r -dimensional projective representation of SL(2,Z) that
factors through SL(2,Z/NZ). This is called a level N
representation.



Admissible Data Criteria I

A pair of r × r matrices (S ,T ) are said to be admissible modular
data if they meet the following set of criteria along with some
others admitted for brevity (Definition 2.7, BNRW):

Define:

dj := S0j , D2 :=
r−1∑
i=0

d2
i , p± :=

r−1∑
j=0

djθ
±1
k

I dj real.

I ord(T ) = N <∞.

Finally, we have that the matrix obtained from S by dividing
column i by di simultaneously diagonalizes the Nk . We will call
this matrix S̃ .



Admissible Data Criteria I

A pair of r × r matrices (S ,T ) are said to be admissible modular
data if they meet the following set of criteria along with some
others admitted for brevity (Definition 2.7, BNRW): Define:

dj := S0j , D2 :=
r−1∑
i=0

d2
i , p± :=

r−1∑
j=0

djθ
±1
k

I dj real.

I ord(T ) = N <∞.

Finally, we have that the matrix obtained from S by dividing
column i by di simultaneously diagonalizes the Nk . We will call
this matrix S̃ .



Admissible Data Criteria I

A pair of r × r matrices (S ,T ) are said to be admissible modular
data if they meet the following set of criteria along with some
others admitted for brevity (Definition 2.7, BNRW): Define:

dj := S0j , D2 :=
r−1∑
i=0

d2
i , p± :=

r−1∑
j=0

djθ
±1
k

I dj real.

I ord(T ) = N <∞.

Finally, we have that the matrix obtained from S by dividing
column i by di simultaneously diagonalizes the Nk . We will call
this matrix S̃ .



Admissible Data Criteria I

A pair of r × r matrices (S ,T ) are said to be admissible modular
data if they meet the following set of criteria along with some
others admitted for brevity (Definition 2.7, BNRW): Define:

dj := S0j , D2 :=
r−1∑
i=0

d2
i , p± :=

r−1∑
j=0

djθ
±1
k

I dj real.

I ord(T ) = N <∞.

Finally, we have that the matrix obtained from S by dividing
column i by di simultaneously diagonalizes the Nk . We will call
this matrix S̃ .



Admissible Data Criteria I

A pair of r × r matrices (S ,T ) are said to be admissible modular
data if they meet the following set of criteria along with some
others admitted for brevity (Definition 2.7, BNRW): Define:

dj := S0j , D2 :=
r−1∑
i=0

d2
i , p± :=

r−1∑
j=0

djθ
±1
k

I dj real.

I ord(T ) = N <∞.

Finally, we have that the matrix obtained from S by dividing
column i by di simultaneously diagonalizes the Nk . We will call
this matrix S̃ .



Admissible Data Criteria II

I (Othogonality) S = S t , SS† = D2I

I (ST )3 = p+S2

I Q(T ) abelian.

I Q(S) ⊂ Q(T ) = Q(ζN)

I Gal(Q(T )/Q(S)) ∼= (Z/2Z)k
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Why?

Any modular category has admissible modular data. It is thought
that all admissible modular data actually occurs as the modular
data of some modular category. Thus, as a first step, it’s a good
idea to find all the data (it doesn’t determine the category
uniquely)



Tools

I Galois Theory

I Galois Symmetry
I Algebraic Number Theory, ex: Diophantine Equations

I Representation Theory of SL(2,Z)
I Constraints on both the order and spectra of the T -matrix

I Computational Algebra
I Gröbner Basis Algorithm (Maple and Macaulay 2)
I Wolfram Mathematica
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Galois Symmetry

The Galois group of Q(S) applied element-wise to S̃ , permutes the
columns of S̃ . When we say that the Galois group of the category
is (012)(345), this is the permutation we mean.

The Galois
Symmetry gives us a set of n signs εσ(i) for each σ ∈ Gal(S).

Sij = εσ(i)ε(j)Sσ(i)σ−1(j)

r−1∏
j=0

εσ(j) = (−1)σ (for even r)

σ(θi ) = θσ2(i)
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Current case

We’re interested in r = 6, Gal(S) = 〈(012)(345)〉.



The answers:

Theorem
Up to relabeling, and Galois conjugation, the only modular data for
rank 6, self dual, MTC’s with Galois group 〈(012)(345)〉 are given
by the following 2 pairs of (S ,T ).

S =

[
1 1
1 −1

]
⊗

 1 d d2 − 1
d −(d2 − 1) 1

d2 − 1 1 −d



T =

[
1

i

]
⊗

1

e2πi/7

e10πi/7


where d = 2 cos (π/7) and



The answers:

S =



1 −1 1 r1 r2 r3
−1 1 −1 −r2 −r3 −r1
1 −1 1 r3 r1 r2
r1 −r2 r3 1 1 1
r2 −r3 r1 1 1 1
r3 −r1 r2 1 1 1



T =



1

e4πi/3

e2πi/3

e2πik/9

e2πi/9

e8πi/9


where with α a primitive 18th root of unity,
r1 = −α− α2 + α5, r2 = α + α2 − α4 and r3 = α4 − α5.



Proof outline

I Show the entries of the T matrix are distinct

I Get that either 7|N or 9|N.

I Reference Eholzer to understand the fusion rules in both cases.

I Get that 7|N iff the fusion ring factors. Show this implies the
category factors.

I Look at rank 2 and rank 3 categories and get the answer in
the 7|N case.

I If 9|N, write down the fusion matrices and hit the S-matrix
with Galois theory until it stops kicking. Use knowledge of S
to get T .
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Sign choices

The Galois symmetry gives, after relabeling and other analysis, 7
sets of possible symmetries for the entries of the S matrix.

It also
implies that entries of the T matrix are either all distinct, or come
in sets of 3’s.
A symmetry that actually produces a solution:

1 d1 d2 d3 d4 d5
d1 d2 −1 −d4 −d5 −d3
d2 −1 −d1 d5 d3 d4
d3 −d4 d5 S33 S34 S35
d4 −d5 d3 S34 S35 S33
d5 −d3 d4 S35 S33 S34


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Gröbner Bases imply Nondegeneracy

We split the analysis into 2 cases, and use Gröbner bases and the
fact that p,D, θi 6= 0:

Sign Choice 3, Case 1: Initial ideal
generated by twist relations, orthogonality, θ1 − 1, θ2 − 1.

Factored Polynomials Zero Factors Added

p(d3 − d4 + d5)D d3 − d4 + d5
D2(p2 − D2),D4(θ3 + θ4 + θ5 + 1) p2 − D2, θ3 + θ4 + θ5 + 1

D4(θ25 − 1),D4(θ24 − 1)
Note: This won’t work in the (012) case. We know of a solution

where the last three entries of the T matrix are the same.



Gröbner Bases imply Nondegeneracy

We split the analysis into 2 cases, and use Gröbner bases and the
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Divisibility properties

The fact that either 7|N or 9|N comes from Proposition 3.13 in
BNRW and will continue to hold in the (012) case.

It’s essentially
a consequence of the fact that Q(T )/Q(S) is a 2-group.
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Results from the classification of fusion algebras

The nondegeneracy of the T -spectra implies irreduciblity of the
representation and means we can use [E]

In the 7|N case, the only level 7 representation is 3 dimensional, so
the fusion rules are a product.
9|N means we have fusion rules like B9.
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7 divides N

[O1],[O2] and [D] and [M] together imply that if the category has
product fusion rules, then it’s a product category. The proof is by
contradiction and goes as follows:

Suppose the fusion rules factor,
but the category does not.

I [M] implies that the fusion subcategories B1,B2 are not
modular. Let B1 have rank 2, B2 rank 3.

I [O1] shows that the dimensions for B1 are integral.

I [D] implies that B2 is not symmetric.

I [O2] gives all possibilities for B2

I None of them have a realizable Galois group. We needed
Daniel Creamer’s thesis for this step.

So we have a product category. [RSW] classifies all the 2 and 3
dimensional categories, so we can just look for the right modular
data there.
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9 divides N

I had Mathematica solve for and factor the characteristic
polynomials of the fusion matrices for B9.

n0(x) = (x − 1)6

n1(x) = (x + 1)3(x3 − 6x2 + 3x + 1)

n2(x) = (x − 1)3(x3 − 3x2 − 6x − 1)

n3(x) = n4(x) = n5(x) = (x3 − 3x + 1)(x3 − 3x2 + 1)

We solve for the top left corner of S , which gives all of S .
Once we have that, Gröbner bases give enough relations to solve
for all of T , and we’re done.
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Things left to do

I Sort out the root of unity issue in T .

I See if this implies we know the categories.

I Sleep during normal hours.
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