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SCHEDULE

MONDAY, July 16

08:00–08:25 Breakfast snacks in Blocker 220/246 Bluebaker

08:30–08:50
Geometry of Real Roots, with an Eye
Toward Chemical Reaction Networks I

Lacey Eagan

08:55–09:15
Geometry of Real Roots, with an Eye
Toward Chemical Reaction Networks II

Luis Feliciano

09:20–09:40
A Faster Randomized Algorithm
for Counting Roots in Z/(pk) I

Natalie Randall

09:45–10:05
A Faster Randomized Algorithm
for Counting Roots in Z/(pk) II

Lean Kopp

10:20–10:40 Integral Metapletic Modular Categories I Leslie Mavrakis
10:40–10:50

11:00–11:10
Integral Metapletic Modular Categories II Sydney Timmerman

11:10–11:30 Integral Metapletic Modular Categories III Benjamin Warren

11:35–11:55
On classification of modular
tensor categories

David Green

12:00–12:55 Lunch in Blocker 246 Taz

12:55–13:15
Effective bounds for traces
of singular moduli I

Meagan Kenney

13:15–13:35
Effective bounds for traces
of singular moduli II

Havi Ellers

13:40–14:00
Dedekind Sums Arising from
Generalized Eisenstein Series I

Tristie Stucker

14:05–14:25
Dedekind Sums Arising from
Generalized Eisenstein Series I

Amy Vennos

As always, we gratefully acknowledge the support of our Department Head Emil Straube, Associate
Department Head Paulo Lima-Filho, Undergraduate Program Assistant Donna Hoffman, and the support
of the National Science Foundation through REU grants DMS-1460766 and DMS-1757872.



ABSTRACTS
(In order of appearance)

Geometry of Real Roots, with an Eye Toward Chemical Reaction Networks I,
by Lacy Eagan (Howard Payne University, Brownwood, Texas)

Chemical reactions are constantly taking place within every single animal and plant cell, and these
reactions can be modeled by Chemical Reaction Networks. The particular chemical reaction that we chose
to study through Chemical Reaction Networks is Phosphorylation. After modeling Phosphorylation, we
use Mass Action Kinetics to derive nine reaction rate equations with nine unknowns which we can then
solve to find the equilibria of our Chemical Reaction Network. We are interested in the equilibria because
we would like to see when they take place and under what conditions. After reducing our 9× 9 system to
a much simpler 2× 2 system, we apply A-Discriminants to obtain a better idea of what our roots will look
like. Discriminant Varieties divide the coefficient space into regions where the underlying number of real
roots is constant, and we use Linear Programming to see which coefficient sign vectors yield simpler root
counting.

Geometry of Real Roots, with an Eye Toward Chemical Reaction Networks II,
by Luis Feliciano (New York, New York)

Solving for the real roots of polynomial systems becomes more challenging as we add more terms and
variables. However, we can use convex geometry to find metric estimates of real roots in a fraction of the
time! Here we will develop some of the tools necessary to build up to our main tool — the Archimedean
Tropical Variety, a piece-wise linear construction guaranteed to be close to our complex zero set, and a
signed variant that has the same isotopy type as the positive zero set with high probability. We will show
the results of applying these constructions to a family of 9 × 9 polynomial systems arising from chemical
reaction networks.

A Faster Randomized Algorithm for Root Counting in Z/(pk) I,
by Natalie Randall (Austin College, Sherman, Texas)

Given a univariate polynomial f ∈ Z/(pk), we can write f as a Taylor expansion using the following
perturbation: Let ζ be some root of f in Z/(p) and let ε be some value in Z/(pk1); then we can consider

f(ζ + pε) = f(ζ) + f ′(ζ)pε+ 1
2!
f ′′(ζ)p2ε2 + · · ·+ 1

(k−1)!
f (k−1)(ζ)pk−1εk−1 mod pk.

By dividing by suitable powers of p and reducing this expansion modulo lower powers of p, we can recur-
sively isolate the roots of f in the ring Z/(pk). We thus attain a Las Vegas randomized complexity bound
of d1.5+o(1)(log p)2+o(1)1.12k (apparently the fastest to date) for counting the roots of f in Z/(pk).

A Faster Randomized Algorithm for Root Counting in Z/(pk) II,
by Leann Kopp (Auburn University, Auburn, Alabama)

Recent work by Cheng, Gao, Rojas, and Wan introduced a deterministic algorithm for counting the
number of roots of a univariate polynomial f in Z/(pk), where p is a prime, k a positive integer, and f is
not identically 0 mod p. Here we discuss a new randomized algorithm for this problem, and compare our
new algorithm to simple brute-force to see when we have practical time gains. In addition, we present an
upper bound on the number of roots of f (as a function of p, k, and the degree of f) that is optimal for
k = 2.

Integral Metapletic Modular Categories I, II, and III,
by Leslie Mavrakis (Seattle Pacific University, Seattle, Washington), Sydney Timmerman (Johns Hopkins
University, Baltimore, Maryland), and Benjamin Warren (Swarthmore College, Swarthmore, Pennsylvania)

At the intersection of mathematics, physics, and computer science, topological quantum computation
utilizes the swapping of non-Abelian anyons to perform computation that is topologically protected against
decoherence. This swapping gives a representation of the braid group, where the strands are the anyon
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world lines. If the image of the braid group representation is dense, quantum gates can usually be ap-
proximated to arbitrary accuracy by braiding anyons. Modular categories provide one model for anyonic
systems; in this model, each simple object corresponds to one anyon type, and the fusion rules defined
on each pair of simple objects allow the fusion of two anyons into a direct sum (superposition) of other
anyons. From each modular category a braid group representation can be constructed. We specifically
study integral metapletic modular categoriesmodular categories with integer dimension that have the same
fusion rules as the quantum group category SO(N)2. We prove integral metaplectic modular categories
are group theoretical, which implies these categories have Property F, i.e. the associated braid group
representations have finite image and are necessarily non-universal. This means that anyonic systems with
these fusion rules cannot be used to create a universal topological quantum computer using only braiding.
The extended Property F conjecture also suggests that there is a classical link invariant associated with
each of these categories. Beginning with a special case, we attempt to determine this link invariant.

On classification of modular tensor categories,
by David L. Green (U Texas, Austin, Texas)

Modular Tensor Categories (MTCs) arise in the study of certain condensed matter systems. There
is an ongoing program to classify MTCs of low rank, up to modular data. We present an overview of
the methods to classify modular tensor categories of low rank, applied to the specific case of a rank 6
category with Galois group 〈(012)(345)〉, and give evidence that certain symmetries in this case imply
nonunitarizable (hence, nonphysical) MTCs.

Effective bounds for traces of singular moduli,
by Havi Ellers (Harvey Mudd College, Claremont, California) and Meagan Kenney (Bard College, Annandale-
on-Hudson, New York)

Values of the classical modular j-function at CM points are algebraic integers called singular moduli.
They play an important role in number theory. In this talk, we will explain how to give effective upper
bounds for traces of singular moduli using Poincare series and harmonic analysis on the complex upper
half-plane.

Dedekind Sums Arising from Generalized Eisenstein Series,
by Tristie Stucker (University of Idaho, Moscow, Idaho) and Amy Vennos (Salisbury University, Salisbury,
Maryland)

Given primitive Dirichlet characters χ1 and χ2, we study the weight zero Eisenstein series Eχ1,χ2
(z, s) at

s = 1. We examine transformation properties of terms arising from the Fourier expansion of the Eisenstein
series, and we express these properties with a generalized Dedekind sum formula in terms of Bernoulli
functions.
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