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Definition and Directions

Beginning Goal

To determine when a non-trivial root exists over Fp of the
polynomial

f(x) =

r∑
i=1

aix
ni
i ,

where ai ∈ Fp, x = (x1, . . . , xr) ∈ Fr
p, and ni > 0.

• The prime field Fp is the set of integers modulo p where
addition, subtraction, multiplication, and division are
well-defined via modular arithmetic.

• If f(x) = 5 + 4x21 in F7, we have roots x1 = 2 and x1 = 5.
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Chevalley-Warning Theorem and Ax’s Extension

Chevalley-Warning Theorem 1935

Let f(x) =
∑r

i=1 aix
ni
i , where ai ∈ Fp, x = (x1, . . . , xr) ∈ Fr

p,
and ni > 0. If deg(f) < r, then f(x) has 0 (mod p) roots.

Consider x21 + x22 + x23 = 0 over F11. Since (0, 0, 0) is a root,
there must be at least 10 more.

Ax 1964

Let b be the largest positive integer strictly less than r/deg(f).
Then, f(x) has 0 (mod pb) roots.
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Condition for Guaranteed Root

Again, let f(x) =
∑r

i=1 aix
ni
i over Fp.

• If there exists an ni such that gcd(ni, p− 1) = 1, then there
exists a non-trivial root automatically since aix

ni
i is a

permutation of Fp.

• If we consider the mapping 3x5 over F7, we obtain:

0
1
2
3
4
5
6

0
1
2
3
4
5
6

• Now, we see that f(x) = 3x51 + 4x32 has a root (7 actually).
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Extending the Condition for Guaranteed Root

If gcd(ni, p− 1) = gcd(nj , p− 1) = 2 for some ni and nj , then
the image of aix

ni
i + ajx

nj

j is Fp.

• The image of aix
ni
i has exactly p−1

2 + 1 elements in Fp.
• Follows from ni = 2m where xm permutes Fp.

• Given b ∈ Fp, the image of b− ajx
nj

j has p−1
2 + 1 elements.

• The images of b− ajx
nj

j and aix
ni
i have union of at most p

elements, but (p−1
2 + 1) + (p−1

2 + 1) = p+ 1.

• So, for some xi and xj , b− ajx
nj

j = aix
ni
i .
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Pathological Polynomials

So, when are there no roots?

• Fermat’s Little Theorem states that for any x ∈ Fp,

xp−1 ∈ {0, 1}, so x
p−1
2 ∈ {−1, 0, 1}.

• Consider x2 in F5:

−2
−1

0
1
2

−1
0
1

x31 + x32 − 3 has no roots over F7,
x51 + x52 + x53 + x54 − 5 has no roots over F11, etc.
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Weil and his Bound

Weil 1949

Let f(x) =
∑r

i=1 aix
ni
i , N be the number of roots of f(x) + 1,

and di = gcd(ni, p− 1). Then,

|N − pr−1| ≤ (d1 − 1) · · · (dr − 1)p
r−1
2

• If di = 1 for any i, then N = pr−1 exactly.

• If di ≥ 2 for all i and di = dj = 2 for some i and j, then
since aix

ni
i + ajx

nj

j can be anything, the other r − 2

variables are totally free and N ' pr−1.
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Univariate Polynomials and Roots of Unity

Multivariate polynomials over Fp are bad, but univariate
polynomials over Fp are terrible!

• Consider xp − x over Fp. By Fermat’s Little Theorem,
xp = x, so every element of the field is a root.

• Also, xp − x+ 1 has no roots. These roots clearly do not
behave well.

But, hope is not lost! Univariate Polynomials are very
well-understood over the roots of unity.
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Polynomials and Roots of Unity

Cheng 2007

We now have a deterministic (nonrandomized), polynomial time
algorithm for deciding if the nth primitive root of unity ωn

satisfies
∑k

i=1 ciω
ei
n = 0, where ci ∈ Z.

• Previously, only randomized algorithms were known.

• He found a way to churn down lengthy polynomials with
roots of unity having huge order into smaller ones and then
using previously known techniques to do the rest.
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The Possible Connection

Dvornicich and Zannier 2002

Essentially, roots of unity ζi satisfying
∑k−1

i=0 aiζi ≡ 0 (mod p)

are no more complicated than those satisfying
∑k−1

i=0 aiζi = 0,
where ai ∈ Q.

• In fact, the independence of the roots of unity are bounded
tightly below by essentially the same equation involving
prime factors of the total order.

• Looking forward, we may be able to find and substitute
portions of univariate polynomials with sums of roots of
unity.
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