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ABSTRACT

Neural codes are mathematical models of neural activity. Neuroscientists have
discovered neurons called place cells which fire when animals are in specific (and
usually convex) regions in space. Through monitoring these place cells and recording
data on when they fire, we can construct neural codes, which tell us which neurons
fire together. Of particular interest to the mathematical community is identifying
which codes can be represented by open or closed convex sets. In this paper, we
provide counterexamples for two conjectures regarding closed convex neural codes
along with several other results, including a new method for determining whether or
not a code is open convex.
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1 Introduction

In recent years, mathematicians have become fascinated with neural codes corresponding to specific
types of neurons called place cells. Place cells, which were discovered by John O’Keefe in 1971
and won him a joint Nobel Prize in Physiology or Medicine in 2014, are neurons in animals that
fire when the animal is in a specific location. This process creates a mental map of the region in
the brain. Research has shown that the locations that can be mapped in this way are almost always
convex, and neural codes are derived from the intersections of these regions. This has prompted
mathematicians to consider the following question: given a neural code of some finite number of
neurons, is it possible for this code to correspond to a location (or set of locations) that can be
mapped by the brain using place cells? Specifically, can these regions be constructed using only
open convex sets? Closed convex sets?

Within the context of this paper, we consider some specific questions: How are open convex and
closed convex codes related? What properties must a code have in order to be open convex but not
closed convex? What about codes that are closed but not open convex? And finally, is there a faster
way to show that a neural code is open convex than simply drawing the entire diagram - potentially
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in a high-dimensional space? This paper addresses each of these questions while proving several
smaller results along the way.

In Section 2, we provide the definitions, notation, and previous results that are pertinent to this paper.
In Section 3, we discuss the differences between open and closed convexity as well as disprove two
conjectures regarding closed convexity. In Section 4, we examine the dimensionality of place field
diagrams and their interwoven relationship with open convexity. In Section 5, we present a method
for proving open convexity of a neural code given a smaller, reduced form of the code. In Section 6
we provide some additional results that were proven along the way, so that future researchers have
some extra tools in their tool-belt when they investigate neural codes. We additionally provide a
few conjectures in an effort to provide potential directions for future research.

2 Background

In order to set up the problems, we first provide some relevant definitions and notation.

2.1 Neural Codes and Convexity

Definition 2.1. A codeword σ on n neurons is a subset of the population of neurons [n] =
{1, 2, ..., n}.

For example, σ = {1, 3, 4} indicates that neurons 1, 3, and 4 are active, while all other neurons are
silent. Throughout this paper, we will write codewords without brackets or commas for the sake of
brevity. So σ = 134 will be used in place of σ = {1, 3, 4}.

Definition 2.2. A set of codewords is known as a neural code C. For codewords σ ⊆ [n], we have
C ⊆ 2[n].
Definition 2.3. A code C is n-sparse if no codeword σ ∈ C contains more than n neurons.

The problems addressed in this paper focus mainly on determining which neural codes are convex,
as well as identifying differences between open and closed convex codes. The definitions of open
and closed convexity are below.

Definition 2.4. A convex set U ⊆ Rn is a set of points such that, given any two points x, y ∈ U , the
line joining them lies entirely within that set. Algebraically, a set S is convex if for all x, y ∈ S,
λx+ (1− λ)y ∈ S for all λ ∈ [0, 1].
Definition 2.5. A set U is open if for all x ∈ U there exists some neighborhood of x that lies
entirely within U . A set U is closed if it is the compliment of an open set.
Definition 2.6. For a word σ ∈ C, we define the set Uσ = ∩i∈σUi.
Definition 2.7. A code C ⊂ 2[n] is open (respectively, closed) convex if there exist open (respectively,
closed) subsets U1,U2, . . .Un ⊆ Rd, for some d, that realize the code.
Example 2.8. Consider the neural code C = {1, 2, 3, 12, 13, 23, 123, ∅}. This code can be expressed
using both exclusively open and exclusively closed sets in the form of a traditional three circle
Venn-diagram, as seen in Figure 1.

2.2 Facets and Intersection Completeness

Other important definitions refer to maximal elements of a code and their intersections.
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Figure 1: Open and closed convex realizations of the neural code C, respectively.

Definition 2.9. A codeword σ ∈ C is a facet of C if it is a maximal element of C with respect to
inclusion, that is, σ * α for all α ∈ C such that α 6= σ.

In this paper, whenever we list a code C, all facets of C will be bolded.

Definition 2.10. A code C is max-intersection complete if all the maximal intersections of its
facets are in C. If a code does not contain all of its facets’ intersections then it is max-intersection
incomplete.

It was proved in [1] that if a code C is max-intersection complete, then it is both open and closed
convex.

2.3 Simplicial Complexes and Local Obstructions

Definition 2.11. A simplicial complex is a subset of 2[n] that is closed under taking subsets, where
[n] := {1, 2, ..., n} is the population of neurons.
Definition 2.12. More specifically, for a neural code C on n neurons, the simplicial complex ∆(C)
is defined as:

∆(C) := {σ ⊆ [n] : σ ⊆ α for some α ∈ C}.
Definition 2.13. Let ∆ be a simplicial complex on n neurons and σ ∈ ∆. Then the link of σ in ∆
is:

Lkσ(∆) := {τ ⊆ [n]\σ : σ ∪ τ ∈ ∆}.
Definition 2.14. A set is contractible if it can be continuously deformed to a single point within the
set.
Definition 2.15. A word σ ∈ ∆(C) is mandatory if Lkσ(∆(C)) is not contractible. If Lkσ(∆(C)) is
contractible, then σ is said to be non-mandatory.
Definition 2.16. A code C with σ ∈ ∆(C) has a local obstruction at σ if σ is mandatory and not in
C. If C contains all of its mandatory codewords, then C is locally good.

It was proved in [2] and [3] that if C is convex, then it is locally good.

We introduce the following definition.
Definition 2.17. For a 3-sparse neural code, the reduced sub-code of C, denoted Cred, is the code
containing all size-three codewords of C and their subsets that are also in C.

3
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3 Results on Conjectures Regarding Closed Convexity

3.1 The Goldrup and Phillipson Conjecture

Recently, [4] posed the following conjecture as an attempt to distinguish codes that are open convex
but not closed convex.

Conjecture 3.1. [4] Let C be an open convex, max-intersection incomplete code with at least two
non-mandatory codewords. Suppose C has at least 3 facets M1,M2,M3, and there is σ ⊂M1 with
σ ∈ C such that σ ∩M2 6∈ C. Then C is not closed convex.

We show the conjecture is false by providing a counter-example.

Theorem 3.2. The neural code C = {∅, 1, 2, 12, 13, 14, 23, 24,123,124,135,236} fulfills the
hypotheses of Conjecture 3.1 and is closed convex.

Proof. We begin by checking that C satisfies the hypotheses of Conjecture 3.1. First, we must show
that C is open convex. An open convex realization of C is provided in Figure 2.

Additionally, Conjecture 3.1 states that C must be max-intersection incomplete. Note that the facets
of C are 123, 124, 135, and 236. The code C is max-intersection incomplete because 135 ∩ 236 =
3 /∈ C.

We must also show that C has at least 2 non-mandatory codewords. The simplicial complex of C
is ∆(C) = {123,124,135,236, 12, 13, 14, 15, 23, 24, 26, 35, 36, 1, 2, 3, 4, 5, 6, ∅}. From this set,
we get Lk{3}(∆(C)) = {12, 15, 26, 1, 2, 5, 6, ∅}, which is contractible (see Figure 3). Additionally,
Lk{4}(∆(C)) = {12, 1, 2, ∅} is contractible (see Figure 4). Therefore C has at least two non-
mandatory codewords, namely 3 and 4.

Finally, we must show that C has at least 3 facets M1,M2,M3 such that there is a σ ∈ C with the
property σ ⊂ M1 and σ ∩M2 /∈ C. Let M1 = 123,M2 = 236,M3 = 124, and let σ = 13 ∈ C.
Then it is true that σ ⊂M1, because 13 ⊂ 123. It is also true that σ∩M2 /∈ C, as 13∩ 236 = 3 /∈ C.

Therefore, our code C = {∅, 1, 2, 12, 13, 14, 23, 24,123,124,135,236} is open convex, max-
intersection-incomplete, has at least 2 non-mandatory codewords, and has 3 facets M1,M2,M3

such that there is a σ ∈ C with the property σ ⊂ M1 and σ ∩M2 /∈ C. However, a closed convex
realization of C can be seen in Figure 5, which was obtained by including the boundaries of the
place fields given in the open convex realization in Figure 2. This proves that C is a counterexample
to Conjecture 3.1.

3.2 Open but not Closed Convex Codes

Conjecture 3.3. Let C be a locally good, 3-sparse code. Then C must be closed convex.

Conjecture 3.4. Let C be a locally good, 3-sparse code. Then C must be open convex.

It has already been proven by [2] and [3] that if a neural code is convex, it is also locally good. It is
natural to wonder if the converse is also true. It was also stated in [2] that 2-sparse, locally good
codes are always both open and closed convex. Additionally, it has been proven in [5] that codes
which are 4-sparse or higher are not necessarily convex, even when they are locally good. So all
that is left is the 3-sparse case. In this section we provide a counterexample to Conjecture 3.3.

4
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Figure 2: Open convex realization of counterexample to Goldrup and Phillipson conjecture
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Figure 3: Lk{3}(∆(C)) = {12, 15, 26, 1, 2, 5, 6, ∅} is contractible
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Figure 4: Lk{4}(∆(C)) = {12, 1, 2, ∅} is contractible
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Figure 5: Closed convex realization of counterexample to Goldrup and Phillipson conjecture
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In Theorem 3.5, we give a neural code that is not closed convex. In Corollary 3.6, we show that this
code in fact is also 3-sparse and locally good, making it a valid counterexample to Conjecture 3.3.

Theorem 3.5. The neural code C = {∅, 4, 5, 12, 14, 23, 35,45,123,124,235} is open convex and
not closed convex.

Proof. An open convex realization of this neural code is provided in Figure 6. Additionally, this
code can be obtained by adding the codewords {14, 25} to the code labeled C3 in [4] and then
permuting the indexing of the neurons. We will utilize the method outlined in [1] to exhibit that C is
not closed convex.

Assume for contradiction that there exists some closed convex realization U = {Ui}5i=1 for C in Rd.
As U14 ∩ U35 = ∅, we can pick distinct points x14 ∈ U14 and x35 ∈ U35. Let L1 = x14, x35. As U123
is closed, we can choose x123 such that d(x123, L1) ≤ d(y123, L1) for all y123 ∈ U123.
Let L2 = x14, x123. Both x14 and x123 lie in U1. As U1 is convex, L2 ⊂ U1. Note that U1 ⊂ U2 ∪ U4,
as whenever the neuron 1 appears in the code it is always accompanied by either a 2 or a 4 (or both).
Thus we can say that L2 ⊂ U2 ∪ U4. Both L2 ∩ U2 and L2 ∩ U4 are closed and non-empty. As L2 is
a line segment it is connected, and therefore L2 ∩ U2 ∩ U4 ⊂ U124 must be nonempty.So there exists
some x124 ∈ U124 such that x124 ∈ L2.

Let L3 = x35, x123. Both x35 and x123 lie in U3. As U3 is convex, L3 ⊂ U3. Note that U3 ⊂ U2 ∪ U5,
as whenever the neuron 3 appears in the code it is always accompanied by either a 2 or a 5 (or both).
Thus we can say that L3 ⊂ U2 ∪ U5. Both L3 ∩ U2 and L3 ∩ U5 are closed and non-empty. As L3

is a line segment it is connected, and therefore L3 ∩ U2 ∩ U5 ⊂ U124 must be nonempty. So there
exists some x235 ∈ U235 such that x235 ∈ L3. Let K = x124, x235. Both x124 and x235 lie in U2. As
U2 is convex, K ⊂ U2. Note that U2 ⊂ U1 ∪ U3, as whenever the neuron 2 appears in the code it
is always accompanied by either a 1 or a 3 (or both). Thus we can say that K ⊂ U1 ∪ U3. Both
K ∩U1 and K ∩U3 are closed and non-empty. As K is a line segment it is connected, and therefore
K ∩ U1 ∩ U3 ⊂ U123 must be nonempty. So there exists some y123 ∈ U123 such that y123 ∈ K.

Thus we see that y123 lies in the interior of the triangle4(x123, x14, x35). However, this would mean
that d(y123, L1) < d(x123, L1), which would contradict the fact that we said x123 was the closest
point to L1 in U123. Thus we have reached a contradiction, implying that C cannot be realized as a
collection of closed convex sets.

We now disprove Conjecture 3.3 by showing that C from Theorem 3.5 is a counterexample.

Corollary 3.6. The neural code C = {∅, 4, 5, 12, 14, 23, 35,45,123,124,235} is a 3-sparse
locally good code that is not closed convex.

Proof. From Theorem 3.5 we know that C is not closed convex. A quick inspection of the code
verifies that C is 3-sparse. Thus all that remains is to show that C is locally good. Thankfully, [2]
and [3] have shown that if a neural code is open convex it must be locally good. Thus, as C is open
convex by Theorem 3.5, it must be locally good.
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Figure 6: An open convex realization of the code in Theorem 3.4 and Corollary 3.5
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Figure 7: Visual proof of Theorem 3.5
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4 Open and Closed Convexity in Rd

In this section, we provide several results establishing connections between closed and open convex
codes. Specifically, we provide methods of taking closed convex realizations of neural codes and
using them to construct open convex realizations.

As much of this section works with dimensionality of codes, we provide the following definition:

Definition 4.1. A set Uσ is full-dimensional in Rd if it contains an open ball in Rd. Similarly, a
realization U = {Ui}ni=1 of a code C is full-dimensional if each Ui is full-dimensional.
Lemma 4.2. Let C be a closed convex neural code on n neurons. Then there exists a closed convex
realization of C, U = {Ui}ni=1 in Rd, for some d ∈ N, such that each Ui is compact.

Proof. Let C be a closed convex neural code on n neurons. Then there exists a closed convex
realization of C, U = {Ui}ni=1 in Rd. If Uσ is compact for each σ ⊂ [n], then we are done. So
assume that there exists some subset of [n], S, such that for each j ∈ S, it is the case that Uj is not
compact. Draw a closed ball B such that, for all i ∈ [n], B contains a point in Ui. Redraw each Ui
as Ui ∩B. As the intersection of closed sets is closed and the intersection of convex sets is convex,
this process preserves both. Thus we are left with a compact, closed convex realization of C.

For the remainder of this paper we will assume for brevity that all closed convex realizations are
compact due to Lemma 4.2.

Lemma 4.3. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in
Rd. If every set in U is full-dimensional, then removing the boundaries of every set U will not add
any codewords.

Proof. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in Rd.
Suppose that every set in in U is full-dimensional. Take some x ∈ Rd. If x does not lie on the
boundary of some set in U , then it will remain in whatever sets it lies in if the boundaries of all sets
in U were removed, and thus will not be included in any new sets.

Suppose without loss of generality that for 1 ≤ i ≤ j ≤ n:

• x ∈ ∂U1, . . . , ∂Ui
• x ∈ int(Ui+1), . . . , int(Uj)

• x 6∈ Uj+1, . . . ,Un

Thus, by removing the boundary of every set, x ∈ Ui+1∩ ...∩Uj ∩UC1 ∩· · ·∩UCi ∩UCj+1∩· · ·∩UCn .

We will show that before removing the boundaries of every set, the set Ui+1 ∩ ... ∩ Uj ∩ UC1 ∩ · · · ∩
UCi ∩ UCj+1 ∩ · · · ∩ UCn is non-empty.

As x ∈ int(Ui+1), . . . , int(Uj), this means that int(Ui+1)∩· · ·∩ int(Uj) 6= ∅. As we are intersecting
the interiors of these sets, which are in full-dimension, their intersection must too be in full-
dimension. Ergo there must exist an open ball in Rd that is contained in this intersection. Let x̃ 6= x
be some point in this open ball. Thus x̃ ∈ Ui+1 ∩ ...∩Uj ∩UC1 ∩ · · · ∩ UCi ∩UCj+1 ∩ · · · ∩ UCn . As it
resides within the interior of this set, it would not be removed with the boundary, showing that the
set is therefore non-empty.

8
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Thus every boundary point of every set in U exists in the interior of some other set, which would
remain after the boundaries were removed. Thus no new codewords could be added by removing
the boundaries of all sets in U .

Theorem 4.4. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1

in Rd. If every region corresponding to a codeword in C is full-dimensional, then C is open convex.

Proof. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in Rd.
Suppose that every set in U can be expressed fully in Rd. As C is closed convex, Ui is closed for
all i ∈ [n]. Thus Ui = ∂Ui ∪ int(Ui). For each i ∈ [n], remove the boundary of Ui, leaving only
the interior of each set, which is open. By definition, boundaries of convex sets in Rd are not
full-dimensional in Rd. As we supposed that every set in U can be expressed as full-dimensional in
Rd, removing these boundaries does not remove any codewords from the code. From Lemma 4.3
we know that no new codewords could be added. Thus we are left with an open convex realization
of C.

Lemma 4.5. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in
Rd. Suppose every region corresponding to a codeword in C is full-dimensional in Rd except for
Uα1 ,Uα2 , . . . ,Uαm . If, for each 1 ≤ i ≤ m, the sets Uαi

are disjoint from the boundary of Uσ for all
σ ∈ C, then C is open convex.

See Figure 8 for a visual example of this lemma.

Proof. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in Rd.
Suppose Uα1 ,Uα2 , . . . ,Uαm are less than d-dimensional and none intersect the boundary of Uσ for
any σ ∈ C. We begin with Uα1 . As all sets in U are closed and compact, we can choose ε > 0
such that ε < d(Uα1 ,Uβ) for all β ∈ C such that Uα1 ∩ Uβ = ∅. If Uα1 ⊂ Uλ for some λ ∈ C, then
re-choose ε such that ε < d(Uα1 , ∂Uλ) as well. Then draw a closed ε-neighborhood around Uα1 .
Redefine Uα1 as this larger closed set. Since the ε-neighborhood of a convex set is also convex, the
closed convexity of Uα1 is preserved.

As this new realization of Uα1 does not intersect any sets that it was not already overlapping (or fire
by itself if it was the subset of some Uλ), the code remains unchanged. Repeat this process for each
Uαi

. Then we have obtained a closed convex realization of C with the property that every set in U
can be expressed fully in Rd. Thus by Theorem 4.4, C is open convex.

These results may also be applied to Lemma 4.2. If by drawing a closed ball B containing at least
one point from each Ui, we end up with any set that is not full-dimensional, we can use the process
outlined in Lemma 4.5 to expand this set into d dimensions.

Lemma 4.6. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in
Rd. Suppose every set in U can be expressed fully in Rd except for Uα1 ,Uα2 , . . . ,Uαm . If, for each
1 ≤ i ≤ m, the set Uαi

∩ ∂Uγ 6= ∅ for exactly one γ ∈ C such that Uγ is in full-dimension, then C is
open convex.

Lemma 4.6 states that we can expand any closed convex set to be full-dimensional in Rd without
changing the original code. The following proof utilizes closed ε-neighborhoods to expand each
such set, and then removes their boundaries, leaving open convex sets.

9
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Uα UαUσ Uσ

Figure 8: Visualization of Proof of Lemma 4.5 in R2

Proof. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in
Rd. Suppose Uα1 ,Uα2 , . . . ,Uαn are not full-dimensional in Rd, and for each 1 ≤ i ≤ n the set
Uαi
∩ ∂Uγ 6= ∅ for exactly one γ ∈ C.

We begin with Uα1 . There are two cases: either Uα1 ⊂ Uγ or Uα1 6⊂ Uγ .

First, we suppose Uα1 ⊂ Uγ . As all sets in U are closed, we can choose ε > 0 such that ε <
d(Uα1 ,Uβ) for all β ∈ C such that Uα1 ∩ Uβ = ∅. If Uα1 ⊂ Uλ for some λ 6= γ ∈ C, then re-choose
ε such that ε < d(Uα1 , ∂Uλ) as well. Draw a closed ε-neighborhood around Uα1 and call this Ũα1 .
Define Ũα1 as the union of the original set and its closed ε-neighborhood. Redefine Uα1 as the set
Uγ ∩ Ũα1 . As both Uγ and Ũα1 are convex, so is Uα1 . By construction, this new realization of Uα1

does not intersect any sets that it was not already overlapping (or fire by itself if it was the subset of
some Uλ), so no codewords appear. Repeat this process for each Uαi

. Since every set in U is now in
full-dimensional, by Theorem 4.4 we can remove the boundary of each set, leaving an open convex
realization of C.

Now suppose that Uα1 6⊂ Uγ . As all sets in U are closed and compact, we can define z to be the
point furthest away from Uα1 that is in Uγ . Next, we choose ε > 0 such that ε < min{d(Uα1 ,Uβ), z}
for all β ∈ C such that Uα1 ∩ Uβ = ∅. If α1 ∈ C, then this is a sufficient ε. If α1 6∈ C, then there
must exist Uλ ⊂ U such that Uα1 ⊂ Uλ. If this is the case, re-choose ε such that ε < d(Uα1 , ∂Uλ) as
well. Then draw a closed ε-neighborhood around Uα1 . Define Ũα1 as the union of the original set
and its closed ε-neighborhood.

As Ũα1 does not intersect any sets that it was not already overlapping (or fire by itself if it was the
subset of some Uλ), the code remains unchanged. Repeat this process for each Uαi

. Since every set
in U is now full-dimensional, by Theorem 4.4 we can remove the boundary of each set, leaving an
open convex realization of C.

Theorem 4.7. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1

in Rd. Suppose every set in U is full-dimensional in Rd except for Uα1 ,Uα2 , . . . ,Uαm , which are
(d− 1)-dimensional. Then C is open convex.

Proof. Let C be a neural code on n neurons with a closed convex realization U = {Ui}ni=1 in Rd.
Suppose for contradiction that C is not open convex. Thus the closed convex realization must be
constructed in such a way that removing the boundary of each Ui would remove some codeword
from or add some codeword to the neural code. Moreover, there could easily be more than one such
codeword. For αi ∈ C, let Uα = Uα1 ∪ Uα2 ∪ · · · ∪ Uαn , where Uα1 ,Uα2 , . . . ,Uαn are all of the sets
that would be removed in this way. This means that each Uαi

must have existed on the boundary of

10
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UαUγ UαUγ

Figure 9: Visualization of Proof of Lemma 4.6 in R2

some other set. Boundaries of sets are not full-dimensional by definition. Thus, by Lemmas 4.5 and
4.6, we know that each Uαi

is completely contained in the intersection of at least two sets. As the
intersection of convex sets is convex, this intersection must either be full-dimensional in Rd−1 or
full-dimensional in some lower dimensional, affine subspace. It will now be shown that Uα cannot
be full-dimensional in Rd−1.

Suppose for contradiction that each Uαi
can be drawn as full-dimensional in Rd−1 and is contained

in the intersection of at least two sets. For each σ ∈ C, choose some point xσ ∈ Uσ. Let zσ equal
the smallest distance from xσ to the boundary of any other set in C. Let z = min{zσ|σ ∈ C}.
Choose ε > 0 such that ε < min{d(Ui,Uj), z} for each Ui,Uj ⊂ U such that Ui ∩ Uj = ∅. For each
1 ≤ i ≤ n, draw a closed neighborhood of radius ε

n
. Redefine each Ui as this closed neighborhood.

As our realization was full-dimensional, by Lemma 4.3, no new codewords were added to the
code. Because of our choice of epsilon, no codewords were removed either. Thus the code remains
unchanged, and every Uαi

has now been expressed fully in Rd. Thus by Theorem 4.4, C is open
convex.

Conjecture 4.8. Let C be a neural code of n neurons with a closed convex realization U = {Ui}ni=1

in Rd. If for every σ ∈ C such that the region Uσ must have dimension (d− 2) or less, if Uσ is equal
to the intersection of three or fewer sets in U , then C is open convex.

Thus far, each locally good neural code that is not open convex has been closed convex. If
Conjecture 4.8 can be proved, it would show that for a code to be closed convex but not open convex,
an intersection of four or more sets would be required. This would mean that there does not exist a
3-sparse, locally good, closed convex code that is not open convex.

Proposition 4.9. If Conjecture 4.8 is true, then any 3-sparse, locally good, closed convex code is
also open convex.

5 A Faster Method to Prove Open Convexity

Theorem 5.1. Let C be a 3-sparse neural code on n neurons. If there exists a closed convex
realization U = {Ui}ni=1 in Rd of Cred such that each Ui is (d− 1) or d-dimensional, then C is open
convex.

11
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Proof. Let C be a 3-sparse locally good neural code on n neurons. Suppose that there exists some
full-dimensional closed realization of Cred, denoted U = {Ui}ni=1 in Rd. We will construct an open
realization of C using U .

We begin with intersections of neurons in Cred. Let λ1 ⊆ σ1 and λ2 ⊆ σ2 for some distinct
σ1, σ2 ∈ Cred such that λ1λ2 is a facet of C. As both Uλ1 and Uλ2 are involved in separate triple-wise
intersections, to avoid local obstructions it must be the case that λ1, λ2 ∈ C. Extend both Uλ1 and
Uλ2 out into Rd+1 some distance such that they overlap in full dimension. This is possible because
no other sets exist in Rd+1. We will write x to denote the distance of this intersection from the rest
of the realization.

Without loss of generality, it is now the case that the intersection between Uλ1 and any other set is
still in Rd. However, by using the same epsilonic expansion technique used in the proof of Theorem
4.7, we can re-express our realization as full-dimensional in Rd+1. However, unlike in Theorem 4.7,
we are refraining from removing the boundaries of our closed sets just yet.

Repeat this process for any other intersections of neurons that are already in Cred. However, for each
successive intersection, extend the sets into the dimension one above the previous. For example, the
next sets would be extended into Rd+2. This prevents any unwanted overlap between sets.

Thus all that remains is to incorporate neurons in C that are missing from Cred. The only neurons miss-
ing from U are the ones not involved in any triple-wise intersection. Let A = {a1, a2, . . . , am} ⊂ C
denote the set of these neurons.

Begin with some ai such that ai fires with some neuron b1 ∈ Cred. If it fires with a second neuron
b2, begin this process with b1 and repeat again for b2. As C is locally good, it follows that b1 ∈ C to
avoid a local obstruction. Extend b1 some distance x into a new dimension as we did previously.

Either ai ∈ C or it isn’t. If not, then ai cannot fire with any other neuron in C. Thus Uai ⊂ Ub, and
we can draw Uai inside Ub such that Uai does not come into contact with any other set. If ai ∈ C,
then draw Uai ∈ Rd+1 such that it only overlaps with Ub but is not a subset of Ub.
It is now the case that the intersection between Ub and any other set that was extended in the opposite
direction is still in Rd. However, once again by Theorem 4.7 we can re-express our realization fully
once again.

Repeat this process for each 1 ≤ i ≤ m, each time selecting a codeword that contains a neuron
already existing in the realization. This provides us with a full-dimensional closed realization of C.
Thus, by Theorem 4.7, C is open convex.

Example 5.2. Consider the neural code

C = {123, 134, 145, 13, 14, 26, 27, 29, 36, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, ∅}.

Not the easiest code to visualize. Unfortunately, C is not max-intersection complete as 123∩145 = 1
but 1 6∈ C. However, the link of 1 is contractible, and as C contains all of its mandatory codewords,
it is locally good. So how are we to know if this code is open convex? We could attempt to draw a
realization of the entire code, but this would be tiresome and should be avoided if possible.

Thankfully, by Theorem 5.1, we know that if Cred = {123, 134, 145, 13, 14, ∅} is closed convex
such that every set can be realized in Rd−1 or higher, then C must be open. This is a much simpler
code to think about, and closed convex realization of Cred meeting these requirements is given below.
Thus C is open convex.
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U123 U13 U134 U14 U145

Figure 10: Open convex visualization of Cred in R2

6 Additional Results and Future Research

Mathematics never has been and never will be a linear pursuit. Progress occurs with many backtracks
and even more dead ends. This paper was certainly no exception. However, one mathematician’s
dead end may be the key to another’s most important proof. In this section we provide a number of
results we proved that were not essential to our primary goals. We hope that these results, though
not extraordinary in their own right, may at some point down the road prove themselves useful. Or
at least avoid the case in which some other mathematician spends an afternoon of proving some
intermediary step that we could have provided here.

Theorem 6.1. Let C be a locally good neural code on n neurons. If each intersection of two or
more facets consists of at most one neuron, then C is max-intersection complete.

Proof. Let C be a locally good neural code on n neurons with distinct facets M1,M2, . . . ,Mk such
that no intersection of two or more facets contains more than one neuron. Let σ equal the intersection
of some facets Mi1 , . . .Mij . From our suppositions we see Mia ∩Mib = σ for 1 ≤ a 6= b ≤ j.
Thus Lkσ∆(C) is a collection of j disjoint points. Thus the link is not contractible, and to remain
locally good σ must be in the code. Thus C is max-intersection complete.

Lemma 6.2. Let C be a 3-sparse code on n neurons. If C has an intersection of facets, σ, of size
two, then σ is a mandatory codeword.

Proof. Let C be a 3-sparse code on n neurons. Suppose that C has an intersection of distinct facets, σ,
of size two. As C is 3-sparse, by definition Lkσ(∆) can only consist of isolated points. The existence
of any connected points would require a facet of size four. Thus Lkσ(∆) is non-contractible, and σ
is a mandatory codeword of C.

Theorem 6.3. Let C be a 3-sparse locally good max-intersection incomplete code. Then there must
be at least three codewords of size three or more.

Proof. Let C be a 3-sparse locally good max-intersection incomplete code with distinct facets
M1,M2, . . . ,Mn. Then there must exist some codeword σ 6∈ C andMi,Mj ∈ C such thatMi∩Mj =
σ. From Lemma 6.2 we know that σ must be of size one. The facets Mi and Mj must be of at least
size two to remain distinct, given their shared σ. However, if Mi and Mj were of size two, then σ
would be a mandatory codeword. Therefore Mi and Mj must be of size three. From Lemma 6.2 we
see that σ cannot be of size two, and is thus a single neuron.

However, this could not be the entire code, as this would make σ a mandatory codeword. Thus,
there must exist some other facet Mk ∈ C such that Mi ∩Mj ∩Mk = σ. This would maintain σ as
the maximal intersection of facets.
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To remain distinct from Mi and Mj , Mk must contain some neuron τ 6∈Mi,Mj . However, if both
Mi ∩Mk = σ and Mj ∩Mk = σ, then there would exist a local obstruction at σ, as τ would be
disjoint from all other neurons in Lkσ(∆). Thus, without loss of generality, there must exist some α
such that Mi ∩Mk = σβ. Therefore, as C is 3-sparse we know that Mk = σβτ , and is thus of size
three, completing the proof.

Theorem 6.4. The neural code

C = {∅, 4, 5, 12, 14, 23, 35, 45, 46, 47, 56, 58, 123, 124, 235, 456, 467, 568, 4578}

is a locally good code that is neither open convex nor closed convex.

Proof. What we have done here is taken a code that has been proved in [5] to not be open convex
and placed it inside the code provided in Theorem 3.5. Thus the proofs for each of those codes
still apply here. It follows that this code can be neither open convex nor closed convex. Ergo all
that is left is to make sure that the code is locally good. The only intersection of facets that are not
contained in the code are 2 and 5. It can be verified that neither of these codewords are mandatory.
Thus C is a locally good code that is neither open convex nor closed convex.

Conjecture 6.5. Let C be a locally good neural code on n neurons. If n ≤ 7, then C must be either
open or closed convex.

All of the results and codes found to date suggest that for a code to be closed convex but not open
convex (or vice-versa) its visualization must contain (or obtain by adding in boundaries) a set that
exists in two dimensions below that of the ambient space. The code in Theorem 6.4 was the smallest
code that we could find that was neither open convex nor closed convex. Looking at the code in
Theorem 6.4 it is difficult to imagine a smaller code with the same properties, but such is the case
with all codes until they are discovered.

Conjecture 6.6. Let C be a locally good neural code on n neurons. If C is not open convex, then
any convex realization of C in Rd must contain a set that can only be realized in Rd−2 or below.

It was shown in [6] that every neural code can be expressed convexly if we do not specify that all
sets must be either open or closed. However, this conjecture would introduce some situations in
which there are specifications on what these convex realizations would look like.

Conjecture 6.7. Let C be a closed convex neural code on n neurons. Let U = {Ui}ni=1 in Rd be an
arbitrary open convex realization of C. If filling in the boundary of each Ui ∈ U creates a region
corresponding to a codeword that is (d− 2)-dimensional or less, then C is not open convex.
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