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Relation to Mathematics

Can we find criteria to classify neural codes as convex given only the
structure of the code?
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Important Definitions

Open/Closed Convex Codes

A code C ⊂ 2[n] is open (or closed) convex if there exist open (or closed)
convex subsets U1,U2, . . .Un ⊆ Rd , for some d , that generate the code.

U1

U2 U3

U1

U3U2
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Important Definitions

3-Sparse

A code C is 3-sparse if no codeword is longer than 3 neurons.

Hi

Let C = {123, 124, 12, 13, 34, 1, 3, 4, ∅}
hi

Facet

A codeword σ ∈ C is a facet if it is a maximal element of C with
respect to inclusion, that is, σ * α for all α ∈ C such that α 6= σ.

hi
Here, our facets are {123, 124, 34}
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Important Definitions

C = {123, 124, 12, 13, 34, 1, 3, 4, ∅}

Max-Intersection-Complete

A code C is max-intersection complete if all the intersections of its
facets are in C .

Hi

Facets: {123, 124, 34}

Intersections: 12 = 123 ∩ 124, 3 = 123 ∩ 34, 4 = 124 ∩ 34

{12, 3, 4} ⊆ C

So C is max-intersection complete
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Important Definitions

C = {123, 124, 12, 13, 34, 1, 3, 4, ∅}

Simplicial Complex

We define the simplicial complex of a code C as:
∆(C ) := {σ ⊆ [n] : σ ⊆ α for some α ∈ C}

hi
∆(C ) = {123, 124, 34, 12, 13, 14, 23, 24, 34, 1, 2, 3, 4, ∅}

hi

Link

For a simplicial complex ∆ and some σ ∈ ∆, the link of σ is defined
as: Lkσ(∆) := {τ ⊆ [n]\σ : σ ∪ τ ∈ ∆}

hi
Lk{3}(∆(C )) = {12, 4, 1, 2, ∅}
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Important Definitions

C = {123, 124, 12, 13, 34, 1, 3, 4, ∅}

Mandatory

A word σ ∈ ∆(C ) is mandatory if Lkσ(∆(C )) is not contractible.
Similarly, σ is non-mandatory if Lkσ(∆(C )) is contractible.

hi
Lk{3}(∆(C )) = {12, 4, 1, 2, ∅} ———— Lk{1}(∆(C )) = {23, 24, 2, 3, 4, ∅}
hi

1 2

4

3 2 4

Locally Good

A code is locally good if it contains all of its mandatory codewords.
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Disproven Conjectures: Goldrup and Phillipson

Conjecture (Goldrup and Phillipson 2014)

Let C be a code that is open convex, not max intersection-complete, and has
at least two non-mandatory codewords. Suppose C has at least 3 facets
M1,M2,M3, and there is σ ∈ C such that σ ⊂ M1 and σ ∩M2 /∈ C . Then C is
not a closed convex code.

C = {135, 123, 236, 124, 12, 13, 14, 23, 24, 1, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1.

Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123

σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C .

13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex...

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Goldrup and Phillipson Conjecture

Open convex

Not max-∩-complete

135 ∩ 236 = 3 /∈ C

≥ 2 non-mandatory words

Lk{3}(∆) = {15, 12, 26, ∅}
Lk{4}(∆) = {12, ∅}

≥ 3 facets M1,M2,M3

M1 = 123,M2 = 236,M3 = 135

σ ∈ C such that:

σ ⊂ M1. Let σ = 13. 13 ⊂ 123
σ ∩M2 /∈ C . 13 ∩ 236 = 3 /∈ C

Then the Conjecture says C is not closed convex... but this is false!

C = {1, 13, 14, 135, 123, 12,
124, 236, 23, 24, 2, ∅}



Main Question

What we already know:

Convex ⇒ locally good

2-sparse, locally good ⇒ convex

4+-sparse, locally good 6⇒ convex

But what about 3-sparse codes?

hi

Conjecture 1

If a 3-sparse neural code is locally good, then it must be closed convex.

Conjecture 2

If a 3-sparse neural code is locally good, then it must be open convex.
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Closed Convex

Conjecture 1

If a 3-sparse neural code is locally good, then it must be closed convex.

C = {123, 124, 235, 12, 14, 23, 35, 45, 4, 5, ∅}

123
2312

235124

3514

54
45

Recall: Open convex ⇒ locally good
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Open Convex

Theorem 4.3 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover
U = {Ui}ni=1 in Rd that is fully dimensional. For σ ⊂ [n], we define
Uσ = ∩i∈σUi . If there does not exist an α ∈ C such that Uα consists of a
set that cannot be drawn in Rd−1 or higher, then C is open convex.

213
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Open Convex

Lemma 4.4 (G. and Macdonald)

Let C be a neural code on n neurons with a closed convex cover
U = {Ui}ni=1 in Rd . If there exists a Uα that can only be expressed in
Rd−2 or below and is the intersection of exactly two sets in U, then C is
open convex.

Uσ Uγ
Uα
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Possible Future Research

Conjecture

If C is a 3-sparse, locally good neural code on n neurons that is closed
convex, then C is also open convex.

Next Up

Find and define other criteria for open convexity that does not depend on
closed convexity.
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Thank You!

Thank you for listening!
Special thanks to Dr. Anne Shiu, Nida Obatake, Thomas

Yahl, and the National Science Foundation.
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