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Classical Dedekind Sum



Definition

B1(x) =

0 if x ∈ Z

x− ⌊x⌋ − 1
2 otherwise.

s(a, c) =
∑

j mod c
B1
(
j
c

)
B1
(
aj
c

)

. . . one of its many guises:

s(a, c) = 1
4c

∑′

j mod c
cot

(
πj
c

)
cot

(
πaj
c

)
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Dirichlet Characters

A Dirichlet character modulo q is a function χ : Z → C that has

1. period q
2. χ(mn) = χ(m)χ(n)
3. χ(n) = 0 if and only if gcd(n,q) > 1
4. χ(1) = 1

n 0 1 2 3 4
χ(n) 0 1 −i i −1

Dillon & Gaston An average of generalized Dedekind sums 4



Dirichlet Characters

A Dirichlet character modulo q is a function χ : Z → C that has

1. period q
2. χ(mn) = χ(m)χ(n)
3. χ(n) = 0 if and only if gcd(n,q) > 1
4. χ(1) = 1

n 0 1 2 3 4
χ(n) 0 1 −i i −1

Dillon & Gaston An average of generalized Dedekind sums 4



Primitive Characters I

The function

χ0,m(n) =

1 if gcd(n,m) = 1
0 otherwise.

is the principal character modulo m.

Given ψ modulo q, we can induce a character modulo mq by
ψχ0,m.

n 0 1 2 3 4
ψ(n) 0 1 i −i −1

n 0 1 2 3 4 5 6 7 8 9
ψχ0,2(n) 0 1 0 −i 0 0 0 i 0 −1

A primitive character is not induced by any other character.

Dillon & Gaston An average of generalized Dedekind sums 5



Primitive Characters I

The function

χ0,m(n) =

1 if gcd(n,m) = 1
0 otherwise.

is the principal character modulo m.

Given ψ modulo q, we can induce a character modulo mq by
ψχ0,m.

n 0 1 2 3 4
ψ(n) 0 1 i −i −1

n 0 1 2 3 4 5 6 7 8 9
ψχ0,2(n) 0 1 0 −i 0 0 0 i 0 −1

A primitive character is not induced by any other character.

Dillon & Gaston An average of generalized Dedekind sums 5



Primitive Characters I

The function

χ0,m(n) =

1 if gcd(n,m) = 1
0 otherwise.

is the principal character modulo m.

Given ψ modulo q, we can induce a character modulo mq by
ψχ0,m.

n 0 1 2 3 4
ψ(n) 0 1 i −i −1

n 0 1 2 3 4 5 6 7 8 9
ψχ0,2(n) 0 1 0 −i 0 0 0 i 0 −1

A primitive character is not induced by any other character.

Dillon & Gaston An average of generalized Dedekind sums 5



Primitive Characters I

The function

χ0,m(n) =

1 if gcd(n,m) = 1
0 otherwise.

is the principal character modulo m.

Given ψ modulo q, we can induce a character modulo mq by
ψχ0,m.

n 0 1 2 3 4
ψ(n) 0 1 i −i −1

n 0 1 2 3 4 5 6 7 8 9
ψχ0,2(n) 0 1 0 −i 0 0 0 i 0 −1

A primitive character is not induced by any other character.
Dillon & Gaston An average of generalized Dedekind sums 5



Primitive Characters II

n 0 1 2 3 4 5 6 7 8 9 10 11
ψ(n) 0 1 0 0 0 −1 0 1 0 0 0 −1

n 0 1 2
ψ⋆(n) 0 1 −1
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Primitive Characters II

n 0 1 2 3 4 5 6 7 8 9 10 11
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The L-function

The Dirichlet L-function associated with the character χ is

L(s, χ) =
∞∑
n=1

χ(n)
ns

Dirichlet used L(1, χ) to study primes in arithmetic
progressions
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Walum’s Result

Walum evaluated ∑
χ mod p
χ(−1)=−1

|L(1, χ)|2.

In principle, his technique works for all even powers.

Theorem (Walum, 1982)∑
χ mod p
χ(−1)=−1

|L(1, χ)|4 = π4(p− 1)
p2

∑
a mod p

|s(a, c)|2.

Rearranging, we have an average of Dedekind sums:∑
a mod p

|s(a,p)|2 = p2
π4(p− 1)

∑
χ mod p
χ(−1)=−1

|L(1, χ)|4.
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Generalized Dedekind Sum



Definition

Let χ1 mod q1 and χ2 mod q2 be non-trivial primitive Dirichlet
characters. The generalized Dedekind sum is

Sχ1,χ2(a, c) =
∑
j mod c

∑
n mod q1

χ2(j)χ1(n)B1
(
j
c

)
B1
(
n
q1

+
aj
c

)

. . . one of its many guises:

Sχ1,χ2(a, c) = K
∑′

s mod c

∑′

r mod q2

χ1(s)χ2(r) cot
(
π

(
r
q2

− as
c

))
cot

(πs
c

)
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The Second Moment

Theorem (D. and G., 2019)
Let χ1 and χ2 be nontrivial primitive characters such that
χ1χ2(−1) = 1, and let q1q2 | c. Then∑
a mod c
(a,c)=1

|Sχ1,χ2(a, c)|2 =
φ(c)
π4

∑
ψ mod c

ψχ1(−1)=−1

|L(1, ψ⋆χ1)|2|L(1, (ψχ2)⋆)|2|gχ1,χ2(ψ; c)|2.

gχ1,χ2(ψ; c) = K(ψ)
∑
d|c

d≡0 mod q(ψ)

χ2(c/d)
φ(d) ((ψχ2)

⋆µ ∗ 1)(d) (χ1 ∗ µψ⋆)
(

d
q(ψ)

)

Dillon & Gaston An average of generalized Dedekind sums 10



The Second Moment

Theorem (D. and G., 2019)
Let χ1 and χ2 be nontrivial primitive characters such that
χ1χ2(−1) = 1, and let q1q2 | c. Then∑
a mod c
(a,c)=1

|Sχ1,χ2(a, c)|2 =
φ(c)
π4

∑
ψ mod c

ψχ1(−1)=−1

|L(1, ψ⋆χ1)|2|L(1, (ψχ2)⋆)|2|gχ1,χ2(ψ; c)|2.

gχ1,χ2(ψ; c) = K(ψ)
∑
d|c

d≡0 mod q(ψ)

χ2(c/d)
φ(d) ((ψχ2)

⋆µ ∗ 1)(d) (χ1 ∗ µψ⋆)
(

d
q(ψ)

)

Dillon & Gaston An average of generalized Dedekind sums 10



Second Moment Bound

Theorem (D. and G., 2019)
Let χ1 and χ2 be nontrivial primitive characters modulo q1
and q2, respectively, such that χ1χ2(−1) = 1, and let q1q2 | c.
For every ε > 0, there exist positive Aε and Bε such that

Aεc2−ε ≤
∑

a mod c
(a,c)=1

|Sχ1,χ2(a, c)|2 ≤ Bεc2+ε.

Corollary

For all c > 0, Sχ1,χ2(a, c) does not vanish.
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A Different View



SL2(Z)

Definition
The special linear group SL2(Z) is the set of 2× 2 matrices( a b
c d

)
such that ad− bc = 1.

Definition
For N ∈ N+, the subgroup of SL2(Z) such that N divides c is
denoted Γ0(N).

The Dedekind sum is a map from Γ0(q1q2) to C by

Sχ1,χ2(γ) = Sχ1,χ2(a, c).
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A Map with Structure

Let χ(γ) = χ(d). Then

Sχ1,χ2(γ1γ2) = Sχ1,χ2(γ1) + χ1χ2(γ1)Sχ1,χ2(γ2).

If χ1 = χ2, then χ1χ2(γ1) = 1, so Sχ1,χ2(γ) is a homomorphism.

Corollary
The crossed homomorphism Sχ1,χ2 is nontrivial. In fact, for
each c > 0, there exists some a ∈ Z so that Sχ1,χ2(a, c) ̸= 0.
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Questions?
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Bounds on the Second Moment



Overview

Recall that:

Aεc2−ε ≤
∑

a mod c
(a,c)=1

|Sχ1,χ2(a, c)|2 ≤ Bεc2+ε
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Sketchy Outline: Upper bound

∑
a mod c
(a,c)=1

|Sχ1,χ2(a, c)|2 =
φ(c)
π4

∑
ψ mod c

ψχ1(−1)=−1

|L(1, ψ⋆χ1)|2|L(1, (ψχ2)⋆)|2|gχ1,χ2(ψ; c)|2

Bound the L-functions:

• For χ modulo q, there exists K > 0 so that |L(1, χ)| ≤ K log q

Bound g:

• Use the triangle inequality
• Terms inside sum become 1
• Bound by divisor function
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Divisor Function

Definition
d(n) is the number of positive divisors of n.

Example: The divisors of 12 are {1, 2, 3, 4, 6, 12}, so d(12) = 6.

Claim
For all ε > 0 there exists Kε > 0 such that d(n) ≤ Kεnε.

Property
If gcd(m,n) = 1, then d(mn) = d(m)d(n).

So look at d(pk) for primes p.
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Divisor Bound

Want to show that d(pk) ≤ Kεpkε, so consider

d(pk)
pkε

.

Calculate: d(pk) = k+ 1.

k+ 1
(pε)k

≤ Kε

Therefore d(n) ≤ Kεnε.
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Sketchy Outline: Lower bound

∑
a mod c
(a,c)=1

|Sχ1,χ2(a, c)|2 ≥ Aεc2−ε

Bound the L-functions:

• For χ modulo q, there exists Kε > 0 so that
|L(1, χ)| ≥ Kεq−ε

Bound g:

• Restrict the sum

• All the terms are 1!
• Clever counting
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A lemma that counts I

Question
How many primitive characters modulo q are there?

Recall that a primitive character is not induced by a character
of lower modulus.

Let φ⋆(q) be the number of primitive characters modulo q.
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Pick a prime . . .

Look at characters modulo pn.

Idea: count the opposite.

A character is not primitive if it is induced by a character
modulo pn−1.

So we just need to find the number of characters modulo pn−1.
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A Dirichlet Digression

Definition
Let n ∈ N+. The set

(Z/nZ)∗ := {a ∈ Z/nZ : gcd(a,n) = 1}

is a group under multiplication.

We can also define a Dirichlet character χ mod q as a
homomorphism (Z/qZ)∗ → C∗. (This means that χ(1) = 1 and
χ(mn) = χ(m)χ(n).)

Then extend χ to Z by setting

χ(n) =

χ(n mod q) if gcd(n,q) = 1
0 otherwise.
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A Dirichlet Digression

Fact
The number of characters modulo q is equal to the number
of elements of (Z/qZ)∗.

Definition
The number of positive integers less than q that are relatively
prime to q is denoted φ(q).

So there are φ(pn−1) characters modulo pn−1.
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A lemma that counts II

Modulo pn, there are

1. φ(pn) characters
2. φ(pn−1) imprimitive characters
3. φ(pn)− φ(pn−1) primitive characters.

Claim: φ(pn) = pn − pn−1.

Proposition

φ⋆(pn) = pn − 2pn−1 + pn−2.
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Claim: φ(pn) = pn − pn−1.

Proposition

φ⋆(pn) = pn − 2pn−1 + pn−2.
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Conclusion



Conclusion, being the Place in which we Recapitulate the High
Points previously stated to you Fine Folk, and including a Small
Sampling of the Exceedingly Excellent Problems related thereto

• Sχ1,χ2 is a generalization of Dedekind sum
• Sχ1,χ2 : Γ0(q1q2) → C

• Exact formula and bounds for second moment
• Proved that Sχ1,χ2 is always a nontrivial map into C.

Future work
Find formula for or asymptotics of higher moments
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Thank You!

Special thanks to Dr. Matthew Young,

Texas A&M University, and the NSF.
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