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1 Abstract

Polynomial system solving lends itself to a variety of fields, including chemical reaction networks,
geolocation, and semi-definite programming. However, calculating the positive real roots for generic
trinomials is inefficient. More easily calculated polytopes such as the positive tropical variety are
powerful tools for approximating these roots. While the positive tropical variety is known to
frequently be isotopic to the positive zero set of a trinomial, under certain conditions it is not.
Knowing the probability with which these conditions are met for trinomials gives us insight into
the reliability of the positive tropical variety as an approximation tool for the positive zero set. In
this paper, we discuss the probability that the positive tropical variety is isotopic to the positive
zero set for trinomials with normally distributed coefficients.

2 Introduction

Solving polynomial systems is the backbone for countless fields of study. In particular, they are
useful for modeling non-linear systems, and therefore have application in such diverse fields as
biology, and engineering and mechanics. Due to the complex nature of discriminants, which are
commonly used to determine the number of positive real roots of a polynomial (see Definition 3.4),
more efficient estimation tools for the number of real roots are valuable to researchers working
with polynomial systems. In this paper, we consider the reliability of specific estimation tools from
tropical geometry.

To this end, we estimate the topology of the positive real root set, Z+(f), for an arbitrary uni-
variate trinomial by determining the structure of the positive tropical variety, denoted by Trop+(f).
Through the use of Python, the accuracy of these estimates will be scrutinized based on exponent
spread (see Definition 3.1) and coefficient variance. We will also define an upper bound on failure
probabilty (see Definition 3.5) for all univariate trinomials.

In this paper, we will consider univariate trinomials, a simple instance of the n-variate, n+ 2-
nomial, or circuit case. Our trinomials will be of the form f(x) = c1x

α0 + c2x
α1 + c3x

α2 , for
α0 < α1 < α2, and ci Gaussian random variables. Unless explicitly stated otherwise, we assume
α0 = 0. For the rest of this paper, assume all trinomials f are of this form.

As proven in [1], the Archimedean Tropical Variety of a univariate polynomial f is

{v ∈ R | max
j∈{1,...,t}

|cjeajv| is attained for at least two distinct values of j},

a definition which can be easily extended into higher dimensions.
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We will denote as the Positive Tropical Variety

Trop+(f) := {v ∈ R | max
j∈{1,...,t}

|cjeajv| is attained at some indices j, j′ with cj , c
′
j < 0}.

We finally conjecture that

Conjecture 1. Where f is a trinomial with exponent spread s and a variance ratio for c2 of σ,
the failure probability of f can be upper bounded by a function of the form min(O(

√
sσ), O(

√
s),

O(
√
sσ−0.74)).

3 Definitions and Notation

Definition 3.1. The spread of a trinomial f is
min(α1 − α0, α2 − α1)

α2 − α0
.

Note then that when α1 is the midpoint of α2 and α0, the spread is maximized at 0.5. Similarly
as α1 approaches either α0 or α2, the spread approaches 0. In this way, the spread measures how
far apart the exponents in our trinomial are.

Definition 3.2. The support matrix of a trinomial f is A :=
[
0 a1 a2

]
.

Definition 3.3. The lifted support matrix of a trinomial f is Â :=

[
1 1 1
0 a1 a2

]
.

For any basis vector b for the right nullspace of Â, we will denote as bi the ith coordinate of b.
Note that the right nullspace of Â always has dimension 1.

Definition 3.4. The discriminant of a trinomial f is ∆
Â

:= b1 log|c1|+ b2 log|c2|+ b3 log|c3|.
Recall that ∆

Â
> 0 implies that the trinomial has two real roots. However, consider when

sign(bi) and sign(ci) are either equal for all i or opposite for all i. (Note that in any other case the
topology of Trop+ is constant and isotopic to the positive real root set.) In these cases, then we knew
that when ∆

Â
≤ b1 log|b1|+b2 log|b2|+b2 log|b2| then Trop+ indicates that we have zero or one roots.

Thus, Trop+ does not effectively estimate the roots when 0 < ∆
Â
≤ b1 log|b1|+b2 log|b2|+b2 log|b2|.

Similarly, if b1 log|b1|+b2 log|b2|+b2 log|b2| < 0, then as for b1 log|b1|+b2 log|b2|+b2 log|b2| ≤ ∆
Â

Trop+ indicates that we have one or two roots. However, ∆
Â
< 0 implies that the trinomial has

zero positive real roots. Thus, here Trop+ does not effectively estimate the roots when b1 log|b1|+
b2 log|b2|+ b2 log|b2| ≤ ∆

Â
< 0.

Definition 3.5. The failure region of a trinomial f is, depending on the sign of b, either the region
0 < ∆

Â
≤ b1 log|b1|+ b2 log|b2|+ b2 log|b2| or the region b1 log|b1|+ b2 log|b2|+ b2 log|b2| ≤ ∆

Â
< 0

where Trop+ fails to be isotopic to the positive real root set. The failure set of f is the set of
coefficients c = (c1, c2, c3) such that sign(c) = ± sign(b) and ∆

Â
for f lies in the failure region. For

f with fixed αi, the failure probability of f is the probability that when (c1, c2, c3) are randomly
generated from a Gaussian distribution that c is in the failure set of f .

4 Experimental Probability in Error Region

Our first experiments were examining the relationship between the spread of a trinomial f with its
failure probability.

To estimate the failure probability we used 1,000,000 trails for each system of trinomials. In
each trial we used Sage’s Gaussian distribution with a standard deviation of 1 to generate variables
c1, c2, and c3, and then determined if the discriminant generated polynomial was in the failure
region.
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4.1 f(x) = c1 + c2x+ c3x
2

To start off with a simple case for the purpose of later comparisons, we began with the system
of standard quadratic polynomials. For this system, we found the probability of lying within the
failure region to be 5.9895%.

4.2 f(x) = c1 + c2x
26 + c3x

50

We chose to explore polynomials in this system since the exponents here have a large spread. For
these polynomials, we found that the polynomial was in the failure region 5.9744% of the time.

4.3 f = c1 + c2x
99 + c3x

100

We chose to explore polynomials in this system to consider cases with a small spread, and found
that these polynomials were in the failure region only 0.4471% of the time.

This led us to hypothesize that polynomials with a smaller ratio between the final two coefficients
had a better failure probability (we noted from the exponent ratios in 3.1 and 3.2, for instance,
that 1

2 ≈
26
50 and 5.9895% ≈ 5.9744%).

4.4 f = c1 + c2x
19 + c3x

20

To test this hypothesis, we chose polynomials in this system, which has a small ratio though still
a larger ratio than 99

100 , and indeed found that the failure probability was 1.6041%.

5 Exponent Ratio and Failure Probability

To test whether or not the failure probability is related to the ratio α1
α2

of a trinomial f , we explicitly
experimented with how changing this ratio changed the failure probability.

5.1 Experimental Method

We first fixed α2 = 100, and let α1 ∈ [1, 99], incrementing a1 by steps of size 1. That is, we
considered 99 ratios from 0.01 to 0.99. For each of the 100 ratios, we ran 1, 000, 000 trials. Each
trial we generated new random standard Gaussian coefficients for f and determined whether these
coefficients were in the failure set of f . We finally found the failure probability across those
1, 000, 000 trials.

5.2 Results

After running our experiments, we plotted the trials (Figure 1) and after examining the shape of
the output, used scipy’s curve fit function to find a quadratic regression for the data. This gave
us the regression

h(x) = 0.61353465 + 21.87751589x− 21.86653471x2
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Figure 1: α1
α2

vs. Experimental Failure Probability

To see if the relationship changed with respect to the scale of the exponents involved, we then
followed up by checking for α2 = 25 and α1 ∈ [1, 24], in which case we again incremented α1 by
steps of size 1. These exponents gave us the similar regression

h(x) = 0.70553438 + 21.41546383x− 21.40520296x2,

We also checked for α2 = 1987 and α1 ∈ [19, 1900], incrementing by steps of size 19, which
again resulted in a similar regression

h(x) = 0.65678311 + 21.55924563x− 21.47777145x2.

5.3 Exponent Spread Experiment

As these were all polynomials with percentages that decreased as α1 approached either 0 or α2,
and peaked when α1 was roughly α2

2 , we theorized that this curve depended not just on the ratio
between α1 and α2 but actually the largest ratio between α1 and either α0 or α2.

To test this, we looked at 100 trinomials of the form f = c1x
24 + c2x

a1 + c3x
626, 24 < a1 < 626,

running 1,000,000 trials for each polynomial. This time graphing against the ratio between 24
α1

, we
found a similar quadratic curve (Figure 2), with regression

h(x) = −0.27225719 + 23.51542209x− 21.77854389x2
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Figure 2: 24
a1

vs. Experimental Failure Probability

Noticeably, we still end up with a similar curve and regression, such that it is indeed clear that
this relationship is dependent on the maximum ratio between α1 and either α0 or α2, rather than
simply the ratio between either of these specific pairs of exponents.

6 Variance Ratios and Failure Probability

Having examined the role of exponent ratio in shaping failure probability, the next step was to
consider the affect of coefficient ratio on failure probability. Since we desired our coefficients to be
Gaussian random variables, and thus could not set their exact ratio, we instead experimented on
the ratio of the variances of the Gaussian distributions from which we generated the coefficients.

6.1 Trinomials with Large Spread

To test the effect of varying ratios between random Gaussian coefficients, we first examined trino-
mials of the form f(x) = c1 + c2x+ c3x

2.

Thus, Â =

[
1 1 1
0 1 2

]
and ∆

Â
= − log|c1|+ 2 log|c2| − log|c3|. With these fixed values, we knew

that our failure region was 0 < ∆
Â
≤ log|4|.

6.1.1 Experimental Method

To study the effect of different variances on failure probability, we held the standard deviation of
two of the coefficients constant, and changed the standard deviation of the last coefficient. We then
examined how the ratio between these standard deviations affected the failure probability of f .

We first tested the effect of varying the variance of c2. We generated c1 and c3 from standard
Gaussian distributions while incrementing the standard deviation of the distribution for c2, since
numpy’s Normal distribution relies on standard deviation rather than variance. We started with
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σ2 = 0.1 and increased by steps of 0.1. We first considered 100 standard deviations of 0.1 ≤ σ2 ≤ 10
with 1, 000, 000 trials for each standard deviation. When we later varied σ1 and σ3, we ended up
needing to test them over a wider range of values since the failure probability decreased at a slower
rate.

In each trial, we first generated c1 and c3 from a standard Gaussian distribution. We then
randomly generated c2 from a Gaussian distribution with our current standard deviation. We then
determined whether the polynomial lay in the failure region or not. After the 1, 000, 000 trials, we
calculated the probability that a polynomial with the current ratio of standard deviations would
lie in the failure region.

6.1.2 Results

After running our experiments, we plotted the data (Figure 3) and after examining the shape of the
output, used scipy’s curve fit function to fit various regressions to the data, eventually settling
on a linear combination of regressions of the form xe−x and xke−x. This gave us the regression

h(x) = −1.03061413 + 15.572038x1.0356945e−1.04617418x + 1.76374323xe−0.20716401x

Figure 3: Quadratic c2 Standard Deviation Ratio vs. Experimental Failure Probability

We then wanted to test if varying the standard deviation of c3 would produce similar results.
Graphing this (Figure 4), we get a similar regression fit to the linear combination of xe−x and
xke−x

h(x) = 2.29455814 + 3.64985287x0.53354838e−0.33694698x + 7.19452508xe−1.85385613x

When we altered the variance for the distribution for c1, we ended up with a similar regression
as for c3,

h(x) = 2.33935321 + 3.68129608x0.55744044e−0.35261467x + 7.22056226xe−1.8871049x
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Figure 4: Quadratic c3 Standard Deviation Ratio vs. Experimental Failure Probability

6.2 Trinomials with Small Spread

Our previous experiment of how variance ratios affected the failure probability used trinomials
with a large exponent spread. As we saw in Section 5 that the spread of exponents affects the
failure probability, here we consider for trinomials with a small exponent spread how the ratio
of variances between random Gaussian coefficients affects the failure probability. Specifically, we
consider trinomials in the system f(x) = c1 + c2x

99 + c3x
100.

Thus, Â =

[
1 1 1
0 99 100

]
and ∆

Â
= −99 log|c1| + 9900 log|c2| − 9801 log|c3|. With these fixed

values, we know that our failure region is 0 < ∆
Â
≤ 554.415190113 . . ..

6.2.1 Experimental Method

As described in Section 6.1.1, we first generated c1 and c3 from standard Gaussian distributions
while incrementing the standard deviation of the distribution for c2. We started with σ2 = 0.1
and increased by steps of 0.1. We first considered 100 standard deviations of 0.1 ≤ σ2 ≤ 10 with
1, 000, 000 trials for each standard deviation.

6.2.2 Results

After generating our data, we plotted the trials (Figure 5) and after examining the shape of the
output, used scipy’s curve fit function to fit to a linear combination of xe−x and xke−x. This
gave us the regression

h(x) = −0.06450709 + 0.18826155x0.55247034e−0.15034146x − 1.03096168xe−1.09906311x
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Figure 5: Small spread trinomial c2 standard deviation ratio vs. experimental failure probability

We similarly tested the effect of varying the standard deviation of c3. Plotting the data and
using the curve fit function gave us a similar regression,

h(x) = −0.04819254 + 0.17702176x0.63398958e0.179153x + 1.08224924xe−1.15326991x

We finally tested the effect of varying the standard deviation for c1, this time with only
1, 000, 000 trials for each value of σ1, and the same number and range of σ1 values. Plotting
the data clearly showed that changing the standard deviation here did not affect the probability of
being in the failure region (Figure 6).
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Figure 6: Small spread trinomial c1 standard deviation ratio vs. experimental failure probability

7 Parameterizing Coefficients

Moving forwards from considering the relationship between the ratios of variance for the coefficients
and the resulting probability of failure, our next goal was three-fold:

(a) We wished to simplify the fit functions for easier approximation,

(b) to see if we could modify these functions in order to transform them from approximations to
bounding functions,

(c) and finally to see if we could express the coefficients of any bounding functions as a simple
function of the exponent ratios.

That is, for trinomials of the form f(x) = c1 + c2x
α1 + c3x

α2 , with 0 < α1 < α2 and
c1, c3 ∼ N(0, 1) while c2 ∼ N(0, σ), we wished to construct an upper bound on the failure proba-
bility as a function of σ. Further, we wished to find a relationship between this upper bound and
max(α1

α2
, α2−α1

α2
).

7.1 Piecewise Function Shape

Our first step towards this goal was to recognize that the variance regressions used in Section 6
could be simplified if, rather than trying to find a function that fit all the data, we instead expressed
the function as a piece-wise function with much simpler components. In Figure 7, you can see that
a linear fit line for σ before the maximum paired with a regression of the form σ−k for σ after the
maximum approximates the data well.
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Figure 7: Piecewise linear and σ−k fit functions for failure probability vs. σ

Thus we first needed to determine the σ value for the maximum failure probability, in order
to know the domain for each function in the piecewise function. By considering exponent ratios
from [0.1, 0.9], we experimentally determined that the maximum always occurred at σ = 1. As
such, we decided to ensure that the first linear function was an upper bound for σ ∈ (0, 1] and that
the second σ−k function was an upper bound on the failure probability for σ ∈ [1,∞). As it was
impossible to truly experiment for all σ ∈ [1,∞), we experimentally confirmed that σ−k was an
upper bound on the failure probability for all σ ∈ [1, 100].

7.2 Linear Upper Bound: σ ≤ 1

Our second concern was thus to construct a line through the origin that was an upper bound for
all the points where σ ≤ 1. To do so, we used the angles of all the experimental data points to
calculate the exact minimum slope of such a line. In Figure 8, we compare such a line with the
best-fit linear regression found by scipy’s curve fit function where our polynomial is the standard
quadratic equation.
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Figure 8: Linear upper bound and linear approximation for failure probability vs. σ ≤ 1

After seeing through the quadratic example that a line of the form g(σ) = aσ could indeed be
used to upper-bound the failure probabilities for 0 < σ ≤ 1, we began to test how a varied with
respect to α1

α2
.

7.2.1 Experimental Method

We used 10 ratios of α1
α2
∈ [0.1, 1]. For each exponent ratio, we tested 10 different σ ∈ [0.1, 1] with

a step size of 0.1. For each σ we ran 100,000 trials, generating c1 and c3 from a standard Gaussian
distribution and c2 from a Gaussian distribution with standard deviation σ.

Once we had a sample distribution of failure probabilities with respect to standard deviation,
we calculated a using angles as detailed in Section 7.2. For each σ, we ran 10 such experiments, and
took the average of a over the experiments. We then plotted these a against the ratio of exponents
for the polynomial, resulting in the distribution of minimum overline slopes seen in Figure 9.

As these slopes follow a clearly quadratic distribution, we also checked whether they had a

possible relationship to

√
max(α1, α2 − α1)

α2
.

To do this, we now considered g(σ) = C

√
max(α1, α2 − α1)

α2
σ. This resulted in the linearized

distribution of minimum overline slopes in Figure 9.
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Figure 9: Minimum slopes for upper bound line vs. exponent ratio

Considering the linearized distribution in Figure 9, we found that the positive portion had
slope 19.62435636 while the negative portion had slope 19.5743313. That is, if we let s denote the
exponent spread, then g(σ) = Cs

√
1− sσ, for an appropriate C. This then suggests that for σ ≤ 1,

the failure probability can be bounded by a function of the form O(
√
sσ).

7.3 σ−k Upper Bound: σ ≥ 1

Our next concern was to construct an upper bound for all σ ≥ 1 of the form σ−k. To do so, we used
scipy’s curve fit function to fit a regression of the form g(σ) = aσ−k to experimentally generate
data, and then incremented k until we had an upper bound curve. Once we knew where these
minimal upper bound exponents were, we then worked to minimize a.

7.3.1 Experimental Method: finding k

We considered nine trinomials of the form f(x) = c1 + c2x
α1 + c3x

α2 , where c1, c3 ∼ N(0, 1) and
c2 ∼ N(0, σ), where α1

α2
∈ [0.1, 0.9]. For each trinomial we considered 100 values of σ ∈ [1, 50]. For

each σ, we ran 100,000 trials to generate the failure probability for randomly generated c1, c2, c3.
We then generated a fit function and incremented k until it was an upper bound curve for the
relationship between failure probability and σ. For each α1

α2
we averaged 10 such k and a values.

We finally graphed the data points for a and k in relation to the exponent ratio, and could see that
they both followed roughly quadratic distributions (Figure 10).
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Figure 10: Minimum upper bound curve constants and exponents vs. polynomial exponent ratios

Since we had been trying to minimize k, and found that 0.74 was a upper bound on the values
of k, we fixed k = 0.74.

7.3.2 Experimental Method: finding a

Having fixed k, we now wished to find a such that g(σ) = aσ−0.74 upper bounded the failure
probability for all exponent spreads.

We again considered nine trinomials with α1
α2
∈ [0.1, 0.9], and 100 values of σ ∈ [1, 50] for each.

This time we ran 1,000,000 trials for each σ to generate the failure probability. We then found the
minimum a to upper bound every data point for that exponent spread. Once we had done so, we
let a be the maximum such across all exponent spreads, such that it upper bounded all.

7.3.3 Results

Through this process, we found that g(σ) = 9σ−0.74 is an effective upper bound for our failure
probabilities.

However, in plotting this upper bound line with our experimental data, it became clear that
while this was a reasonably tight upper bound for the quadratic case (Figure 11), it was a much
less tight upper bound for trinomials with a smaller exponent spread (Figure 12).
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Figure 11: Upper bound for failure probability vs. σ for quadratic

Figure 12: Upper bound for failure probability vs. σ for A = (0, 9, 10)

This suggests that in this case a might again have a dependence on the exponent ratio, leading
us to experiment with whether we could linearize a here similarly to how we did in Section 7.2.1.

That is, we considered g(σ) = C

√
max(α1, α2 − α1)

α2
σ−0.74. We thus repeated our experiment to

find the maximum a, but instead of finding the max across all exponent ratios, we graphed both a
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and C = a

√
α2

max(α1, α2 − α1)
for each ratio (Figure 13).

Figure 13: Constant factor for aσ−k vs. exponent ratio

Considering the linearized distribution in Figure 13, we found that the positive portion had
slope 21.08217057 while the negative portion had slope 21.28604823. That is, if we let s denote the
exponent spread, then g(σ) = Cs

√
1− sσ−0.74, for an appropriate C. This then suggests that for

σ ≥ 1, the failure probability can be bounded by a function of the form O(
√
sσ−0.74).

It is noticeable that these experimental values for C are fairly close to those found in Sec-
tion 7.2.1. Thus, whether these values are in fact related, or have some deeper meaning, is perhaps
a question that further experiments or theory might be able to answer.

7.4 Constant Upper Bound: σ ≈ 1

Since both of our upper bound lines are less accurate around σ ≈ 1, both being much less tight of
a bound around there, we also decided to add a third function to our piecewise function, where we
simply estimate the maximum failure probability. That is, for σ ≈ 1, we found upper bounds of
the form g(σ) = a. Thus, our final piecewise function will choose the minimum failure probability
bound from the three functions for any given σ.

7.4.1 Experimental Method: finding a

We considered nine trinomials of the form f(x) = c1 + c2x
α1 + c3x

α2 , where c1, c3 ∼ N(0, 1) and
c2 ∼ N(0, σ), where α1

α2
∈ [0.1, 0.9]. For each trinomial, recalling that the maximum occurred at

σ = 1, we ran 1,000,000 trials to generate the failure probability for randomly generated c1, c2, c3.
For each α1

α2
we averaged 10 such failure probabilities a. We finally graphed the data points for a

in relation to the exponent ratio, and could see that they followed roughly quadratic distributions
(Figure 10).
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Thus, as in Sections 7.2.1 and 7.3.3, we considered g(σ) = C

√
max(α1, α2 − α1)

α2
σ.

Figure 14: Maximum failure probabilities bound vs. polynomial exponent ratios

Considering the linearized distribution in Figure 14, we found that the positive portion had
slope 14.09708497 while the negative portion had slope 14.05958356. That is, if we let s denote the
exponent spread, then g(σ) = Cs

√
1− s, for an appropriate C. This then suggests that for σ ≈ 1,

the failure probability can be bounded by a function of the form O(
√
s).

8 Conclusion

In this paper we explored the probability that Trop+(f) was not isotopic to Z+(f). We considered
the relationship between this probability and various characteristics of f , specifically the spread of
the exponents of f and the ratio of the variances for f ’s coefficients.

Motivated by our experimental results relating the failure probability of f to its exponent and
variance ratios, we conjectured that the failure probability can be upper bounded by a function of
the form O(

√
sσ) when σ ≤ 1, by O(

√
sσ−0.74) when σ ≥ 1, and by O(

√
s) when σ ≈ 1, where

s is the exponent spread of f and σ is the variance ratio. That is, more simply, we conjecture
that the failure probability of f can be estimated by a fucntion of the form min(O(

√
sσ), O(

√
s),

O(
√
sσ−0.74)).
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