Probability of Easily approximating the Positive Real Roots of Trinomials

Lauren Gernes

Joint work with Laurel Newman

Lewis University

July 23, 2019

Overview

- Motivation/Background
- **2** Using \mathcal{A} -Discriminants to Find Number of Positive Real Roots
- Stimations Using Algebraic Geometry
- 4 How Signs of Coefficients Effect Estimation
- Failure Sets and Regions
- Output of Experiments and Effect of Exponents on Probability

Polynomial System Solving

$$f(f_1, f_2) = \begin{cases} c_1 x^{a_1} y^{b_1} + c_2 x^{a_2} y^{b_2} + c_3 x^{a_3} y^{b_3} \\ c_4 x^{a_4} y^{b_4} + c_5 x^{a_5} y^{b_5} + c_6 x^{a_6} y^{b_6} \end{cases}$$

Polynomial System Solving

$$f(f_1, f_2) = \begin{cases} c_1 x^{a_1} y^{b_1} + c_2 x^{a_2} y^{b_2} + c_3 x^{a_3} y^{b_3} \\ c_4 x^{a_4} y^{b_4} + c_5 x^{a_5} y^{b_5} + c_6 x^{a_6} y^{b_6} \end{cases}$$

Trinomials: $f(x) = c_1 + c_2 x^{a_1} + c_3 x^{a_2}$

Polynomial System Solving

$$f(f_1, f_2) = \begin{cases} c_1 x^{a_1} y^{b_1} + c_2 x^{a_2} y^{b_2} + c_3 x^{a_3} y^{b_3} \\ c_4 x^{a_4} y^{b_4} + c_5 x^{a_5} y^{b_5} + c_6 x^{a_6} y^{b_6} \end{cases}$$

Trinomials:
$$f(x) = c_1 + c_2 x^{a_1} + c_3 x^{a_2}$$

Standard Quadratic:
$$f(x) = c_1 + c_2 x + c_3 x^2$$

Quadratic Formula:

$$\frac{-c_2\pm\sqrt{c_2^2-4c_1c_3}}{2c_1}$$

Polynomial System Solving

$$f(f_1, f_2) = \begin{cases} c_1 x^{a_1} y^{b_1} + c_2 x^{a_2} y^{b_2} + c_3 x^{a_3} y^{b_3} \\ c_4 x^{a_4} y^{b_4} + c_5 x^{a_5} y^{b_5} + c_6 x^{a_6} y^{b_6} \end{cases}$$

Trinomials:
$$f(x) = c_1 + c_2 x^{a_1} + c_3 x^{a_2}$$

Standard Quadratic:
$$f(x) = c_1 + c_2 x + c_3 x^2$$

Quadratic Formula:

$$\frac{-c_2 \pm \sqrt{c_2^2 - 4c_1c_3}}{2c_1}$$

Quadratic A-Discriminant

$\mathcal{A}\text{-Discriminant}$

$$c_2^2-4c_1c_3<0:0~\mathbb{R}^+$$
 Real Roots

$$c_2^2-4c_1c_3=0:1~\mathbb{R}^+$$
 Real Root

$$c_2^2-4c_1c_3>0$$
: 2 \mathbb{R}^+ Real Roots

Quadratic A-Discriminant

A-Discriminant

$$c_2^2 - 4c_1c_3 < 0: 0 \ \mathbb{R}^+$$
 Real Roots $c_2^2 - 4c_1c_3 = 0: 1 \ \mathbb{R}^+$ Real Root $c_2^2 - 4c_1c_3 > 0: 2 \ \mathbb{R}^+$ Real Roots

Logarithmic Version:

$$\log |c_2^2| = \log |4c_1c_3|$$

$$2 \log |c_2| = \log |4| + \log |c_1| + \log |c_3|$$

$$-\log |c_1| + 2 \log |c_2| - \log |c_3| = \log |4|$$

Definitions for A-Discriminant Formula

- Support $(f(x)) = [a_1 \ a_2 \ ... \ a_{n+2}]$
 - $n \in \mathbb{Z}^+$
 - $f = c_1 x^{a_1} + c_2 x^{a_2} + ... + c_{n+2} x^{a_{n+2}}$

Definitions for A-Discriminant Formula

- Support $(f(x)) = [a_1 \ a_2 \ ... \ a_{n+2}]$
 - $n \in \mathbb{Z}^+$
 - $f = c_1 x^{a_1} + c_2 x^{a_2} + ... + c_{n+2} x^{a_{n+2}}$
- Honest: DimNewt(f) = n where n is the number of variables
 - $f(x)=c_1x^{a_1}+c_2x^{a_2}+c_3x^{a_3}$
 - Support $(f(x)) = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$

In the honest n-variate (n+2)-nomial case, for $c_1x^{a_1} + ... + c_{n+2}x^{a_{n+2}}$:

In the honest n-variate (n+2)-nomial case, for $c_1x^{a_1} + ... + c_{n+2}x^{a_{n+2}}$:

• Let
$$\widehat{A} = \begin{bmatrix} 1 & \dots & 1 \\ a_1 & \dots & a_{n+2} \end{bmatrix} \in \mathbb{Z}^{(n+1)\times (n+2)}$$
, $\mathsf{Rank}(\widehat{A}) = n+1$

In the honest n-variate (n+2)-nomial case, for $c_1x^{a_1} + ... + c_{n+2}x^{a_{n+2}}$:

• Let
$$\widehat{A}=egin{bmatrix} 1 & \dots & 1 \\ a_1 & \dots & a_{n+2} \end{bmatrix} \in \mathbb{Z}^{(n+1) imes (n+2)}$$
, $\mathsf{Rank}(\widehat{A}) = n+1$

• Also let b := any generator for the right \mathbb{Z} -Nullspace of \widehat{A}

In the honest n-variate (n+2)-nomial case, for $c_1x^{a_1} + ... + c_{n+2}x^{a_{n+2}}$:

• Let
$$\widehat{A}=\begin{bmatrix}1&\dots&1\\a_1&\dots&a_{n+2}\end{bmatrix}\in\mathbb{Z}^{(n+1)\times(n+2)}$$
, $\mathsf{Rank}(\widehat{A})=n+1$

- Also let b := any generator for the right \mathbb{Z} -Nullspace of \widehat{A}
- Then, $b_1 \log |c_1| + \dots + b_{n+2} \log |c_{n+2}| \stackrel{\geq}{=} b_1 \log |b_1| + \dots + b_{n+2} \log |b_{n+2}|$ $\Rightarrow b \cdot \log |c| \stackrel{\geq}{=} b \cdot \log |b|$

Discriminant Example

Discriminant Inequalities

$$|b_1 \log |c_1| + \dots + |b_{n+2} \log |c_{n+2}| \stackrel{\geq}{=} |b_1 \log |b_1| + \dots + |b_{n+2} \log |b_{n+2}|$$

 $|b \cdot \log |c| \stackrel{\geq}{=} |b \cdot \log |b|$

Quadratic Case

$$c_1+c_2x+c_3x^2$$

Discriminant Example

Discriminant Inequalities

$$b_1 \log |c_1| + \dots + b_{n+2} \log |c_{n+2}| \stackrel{\geq}{=} b_1 \log |b_1| + \dots + b_{n+2} \log |b_{n+2}|$$

$$b \cdot \log |c| \stackrel{\geq}{=} b \cdot \log |b|$$

Quadratic Case

$$c_1+c_2x+c_3x^2$$

$$\widehat{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

Discriminant Example

Discriminant Inequalities

$$b_1 \log |c_1| + \dots + b_{n+2} \log |c_{n+2}| \stackrel{\geq}{\underset{<}{=}} b_1 \log |b_1| + \dots + b_{n+2} \log |b_{n+2}|$$

$$b \cdot \log |c| \stackrel{\geq}{\underset{<}{=}} b \cdot \log |b|$$

Quadratic Case

$$c_1 + c_2 x + c_3 x^2$$

$$\widehat{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

②
$$-1 \log |c_1| + 2 \log |c_2| - 1 \log |c_3| \stackrel{\geq}{=} -1 \log |-1| + 2 \log |2| - 1 \log |-1|$$

 $\Rightarrow -\log |c_1| + 2 \log |c_2| - \log |c_3| \stackrel{\geq}{=} \log |4|$
 $\Rightarrow (-1, 2, -1) \cdot \log |c| \stackrel{\geq}{=} \log |4|$

Algebraic Geometry Estimation Tools

Archimedean Newton Polytope

$$Archnewt(f) := conv\{(a_j, -\log |c_j|)| j \in \{1, ..., t\}\}$$

Algebraic Geometry Estimation Tools

Archimedean Newton Polytope

$$Archnewt(f) := conv\{(a_j, -\log |c_j|)| j \in \{1, ..., t\}\}$$

Examples:

$$\begin{array}{c}
1 - 10x + x^{2} \\
(0, -\log|1|), (2, -\log|1|) \\
(1, -\log|-10|)
\end{array}$$

Algebraic Geometry Estimation Tools (cont)

Positive Archimedean Tropical Variety

When
$$f(x) = \sum_{j=1}^{t} c_j x^{a_j}$$
,

$$\mathsf{Trop}_+(f) := \left\{ w \in \mathbb{R}^n \middle| egin{array}{l} \mathsf{max}_{j \in \{1, \dots, t\}} \, |c_j e^{a_j w}| \ \mathsf{is} \ \mathsf{attained} \ \mathsf{at} \ \mathsf{indices} \ j, j' \ \mathsf{with} \ c_j c_{j'} < 0. \end{array}
ight.$$

Algebraic Geometry Estimation Tools (cont)

Positive Archimedean Tropical Variety

When
$$f(x) = \sum_{j=1}^{t} c_j x^{a_j}$$
,

$$\mathsf{Trop}_+(f) := \left\{ w \in \mathbb{R}^n \middle| egin{array}{l} \mathsf{max}_{j \in \{1, \ldots, t\}} \, |c_j e^{a_j w}| \ \mathsf{is} \ \mathsf{attained} \ \mathsf{at} \ \mathsf{indices} \ j, j' \ \mathsf{with} \ c_j c_{j'} < 0. \end{array}
ight.$$

Example:
$$f(x) = 1 - 10x + x^2$$

 $|1e^{0w}| = |-10e^{1w}| > |1e^{2w}| \Rightarrow$
 $ln(1) = ln(10e^w) > ln(e^{2w}) \Rightarrow$
 $0 = ln 10 + w > 2w \Rightarrow$
 $-ln(10) = w > 2w$

Estimates of Real Roots based on Archnewt

Estimates for Standard Quadratic

$$-1,2,-1)\cdot \log |c| < 0$$
 $0 \mathbb{R}^+$ Roots

$$(-1,2,-1) \cdot \log |c| = 0$$

1 \mathbb{R}^+ Root

$$(-1,2,-1) \cdot \log |c| < 0$$
 $(-1,2,-1) \cdot \log |c| = 0$ $(-1,2,-1) \cdot \log |c| > 0$ \mathbb{R}^+ Roots \mathbb{R}^+ Roots \mathbb{R}^+ Roots

Failure Region for Standard Quadratic

General Failure Sets and Region

Failure Region

$$f(x) = c_1 + c_2 x^{a_1} + c_3 x^{a_2}$$

Error Region: $0 < b \cdot \log |c| < b \cdot \log |b|$

General Failure Sets and Region

Failure Region

$$f(x) = c_1 + c_2 x^{a_1} + c_3 x^{a_2}$$

Error Region: $0 < b \cdot \log |c| < b \cdot \log |b|$

Failure Set

Set of coefficients $c=(c_1,c_2,c_3)$ such that $sign(c)=\pm sign(b)$ and b $\cdot \log |c|$ lies in the failure region

Signs

Recall

$$f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3}$$

b:= any generator for the right $\mathbb{Z} ext{-Nullspace}$ of \widehat{A}

Signs and Failure Possibility

- If $sign(b_i)$ and $sign(c_i)$ are equal or opposite for all $i \in \{1, 2, 3\}$, there is a possibility that $Trop^+$ will not accurately estimate the positive zero set
- In all other cases, topology of Trop⁺ is constant with respect to the coefficients

Update on Experiments and Why Exponents Matter

Probability Various Trinomials Lie in Error Region

- $f(x) = c_1 + c_2 x + c_3 x^2$ • 5.9895%
- $f(x) = c_1 + c_2 x^{26} + c_3 x^{50}$
 - 5.9744%
- $f(x) = c_1 + c_2 x^{99} + c_3 x^{100}$
 - 0.4471%
- $f(x) = c_1 + c_2 x^{19} + c_3 x^{20}$
 - 1.6041%

Thank you for listening!

Special thanks to Professor Rojas, Joann
Coronado, and the National Science Foundation!

$\overline{Trop^+(f)}$ as an Estimate for Positive Roots

Theorem

If $T = \dim(\operatorname{Newt}(f)) + 1$, then any point in $\log |Z_+(f)|$ is within $\log(t-1)$ of some point in $\operatorname{Trop}_+(f)$, and furthermore $\operatorname{Trop}_+(f)$ is isotopic to $\log |Z_+(f)|$.

$\overline{Trop^+(f)}$ as an Estimate for Positive Roots

Theorem

If $T = \dim(\operatorname{Newt}(f)) + 1$, then any point in $\log |Z_+(f)|$ is within $\log(t-1)$ of some point in $\operatorname{Trop}_+(f)$, and furthermore $\operatorname{Trop}_+(f)$ is isotopic to $\log |Z_+(f)|$.

