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Partition

Definition

A partition X of n € Z* is a non-increasing sequence A1 > \» > ... > )\,
such that A\ + ... + Ay = n.

Aj is called a part of the partition A and S, = {\ a partition of n}.

Definition

| A\

The partition function, p(n), is the distinct number of ways to write n as a
sum of natural numbers in a nonincreasing order.

Example

| A\

The partitions of 4 are:
0 4 o 2+1+1

. 341 o 1+1+1+1
0 2142 Thus, p(4) = 5.




Ramanujan Congruences

Using the function p(n), Ramanujan made the following statement:

Theorem

For any k € Z, we have:

p(5k+4)=0 mod 5
p(Tk+5)=0 mod 7
p(llk +6) =0 mod 11

as well as several other congruences modulo any number of the form
527b11°. )




Freeman Dyson defined the following in order to provide a proof for
Ramanujan’s congruences:
For a partition A, let

@ I(\) = the largest part of A

Definition

The rank of A = I(A) - (number of parts of \), and is denoted rank(\).

Example (n=4)

Partitions | Rank (mod 5) | Crank (mod 5)
4 3 4
3+1 1 0
2+2 0 2
24141 -1 = -2
1+1+141 -3 = -4




For a partition A, let
o I(\) = the largest part of A
@ o(A) = the number of 1's in A
@ 1(A) = the number of parts of \ larger than o())

Definition

I(A if o(\) =
The crank of A = () I oY) 0, and is denoted crank(\).
w(A) —o(N) if o(A) >0




Combinatorial Motivation

Example (n=6)

Partitions Rank (mod 11) | Crank (mod 11)
6 6 6
5+1 3 0
442 2 4

4+141 1 -1=10

3+3 1 3
3+2+1 0 1
3+1+1+1 -1=10 -3 =
24242 -1=10 2
24+2+1+1 2=9 2=
24+141+1+41 -3=8 -4 =
1+14+1+14+141 -5=6 -6 =




Motivation and Goals

Definition

M(r,Q;n) = {\ € Pp|crank(\) = r(modQ)}

We want to:

@ Prove the following statement with effective bounds on the error
term: M(pr(’f,‘));") = % + E'(r, Q; n)

e Prove that M(Qn) 1 59 4 oo
p(n) Q

@ Prove surjectivity of M(r, Q; n)

@ Prove strict log-subadditivity for the crank function



Equidistribution Theorem

Let r and Q be relatively prime odd integers. Then

M(r,Q;n)_i (O n
p(n) _Q-I_E(’Qv )7

where

—T —27
(1 _ ev) (1 _ea

V24n—1
x iy e(V24%—1) ==

444868 488798
|E'(r, Qi n)| < (629120 +4.5523Q + + ) )




Equidistribution Corollary

Let r and Q be integers with Q odd. Then

M(r, Q; n) 1
— = —asn— oo
p(n) Q
0.08
0.08 0.07
0.06
0.06
0.05
0.04
0.04
0.03
0.02 0.02
0.01
000 0 2 4 6 8 10 12 0.00 0 2 a 6 8 10 12
M(x,13;13) _ M(x,13;30)

p(13) ¢ p(30)



Asymptotic Equidistribution Modulo Q

Let r and Q be relatively prime odd integers. Then

‘ MTA(r, Qin)| g 7g06n% e(v2Ra-1) =B
p(n - ’

)

% < (81.9414 + 4.5523Q) nf e(v2300-1) ==
and
444867.657  488797.7625

< | 629016.9194 +

‘ E(r,@:n)
p(n)

(1-e9) (1-eF)

7 24n—1
an(__,(\/2460—1)’fv =




The crank is a map such that S, — Z — Z/QZ.
The map S, — Z/QZ is surjective if and only if M(r, Q; n) > 0 for all r:

M(r, Q; n) = Pg) + MTi(r,Q; n) + MTy(r, Q; n) + E(r,Q; n) > 0.

In other words, we want to show that
‘ MTi(r, Q; n)
p(n

MTy(r, Q; n)
)

p(n)

1
Q

<

i ‘ E(;’(g); :

If n> % then given any congruence class r (mod Q) we have

M(r,Q;n) > 0.




Strict log-Subadditivity for Crank Functions

Theorem (Ono-Bessenrodt)
Ifa,b>1and a+ b>9, then

p(a+ b) < p(a)p(b).

For the crank function,

M(r, Q;a+ b) < M(r,Q; a)M(r, Q; b),

as a, b — oo.

A,




Generating functions

P(q):=1+Y p(n)q"
n=1
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Generating functions

P(q):=1+Y p(n)q"
n=1

=(14+q9g+¢+ -1+ +q"+ - YA+ +¢°+--)---

1
(1-q)(1-¢*)(1-q%)-




Generating functions




Modular Forms

Let g = €®™Z and w = €?™'7. This maps H := {x + iy|y > 0} to the unit
disk.
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Modular Forms

Let g = €®™Z and w = €?™'7. This maps H := {x + iy|y > 0} to the unit
disk.

Definition

z,z' € C are SL(2,Z) equivalent if there are integers a, b, ¢, d such that

. _ / __ az+b
ad —bc=1and z =25

| A\

Pseudo-Definition

Modular forms are certain functions for which the values at SL(2,Z)
equivalent numbers are related.

Pseudo-Definition

| A\

A Jacobi Elliptic form (7, z) is a function which is a modular form in z
for fixed .




Modular Forms

n(z) = q%(1— )1 - A1 —¢°)--

W, z) := —2sin(7T) %H (1-q)(1—xq)(1—x"1q)



Modular Forms

P(q) = (1-q)(1-¢>)(1—-¢%) - n(2)

oo n

- 1—g -2 sin(r7)q22(2)
C(w,q) = H (1—wg")(1—w1lg") (T, z)

n=1




Complex Analysis

Unit circle

il
27le

Roots of unity e
e Primitive roots of unity

Complex path integral

Integrals on closed paths are 0



Cauchy's formula

Let f(q) = ap+a1q+ axq®>+-- - be convergent inside the unit circle. Then

_ 1 [ fla),
"o c gt

where C is a closed loop, has no self crossings, is contained inside the unit
circle, and surrounds 0.




Cauchy's formula

Let f(q) = ap+a1q+ axq®>+-- - be convergent inside the unit circle. Then

1 f(q)

" 2w o qntl

where C is a closed loop, has no self crossings, is contained inside the unit
circle, and surrounds 0.

Proof.

| \

f(q)
/C qn+1 dq

ao dan
= dq—|—~-+/dq—|—/a 1dq + - -
/cq"+1 ca ¢

=0+---+2miap +0+---




An Expression for p(n)

So, p(n) = 1/C an(fl) dq

27

Problem solved.
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