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Definition

A code C is max-intersection complete if all the intersections of its facets are
in C. If a code does not contain all of its facets’ intersections then it is
max-intersection incomplete.

Definition

For a neural code C on n vertices, the simplicial complex A(C) is a subset of
2l"] that is closed under taking subsets, where [n] := {1,2, ..., n} is the
population of neurons. More specifically:

A(C) :={o C [n] : 0 C a for some a € C}.

Definition
Let A be a simplicial complex on n vertices and o € A. Then the link of o in A
is:

Lks(A) :=={t C [n]\c : cUT € A}.
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COMPLETE TO THE MAX

Theorem
Let C be a locally good neural code on n neurons. If no intersection of facets
contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets
M, M,, ..., M, such that no intersection of facets contains more than one

neuron.

Suppose by way of contradiction that C is max intersection incomplete. Thus
there must exist some neuron o ¢ C and M;, M; € C such that M\ " M; = o.

As M; and M; are distinct, there must exist a, 8 such that M; = oca and M; = o 8.
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COMPLETE TO THE MAX

Proof.
Consider Lk, (A). Recall that Lky(A) := {7 C [n]\c : c Ut € A}.
Aso Uaand o U B € A(C), it must be the case that a, B € Lks(A).

Thus, as it stands, Lks(A) is the following:
o B
[ J [ J

which is not contractible. There are three ways to make this link contactable,
and we will show how each leads to a contradiction.



Casel:caf € C

Proof.

3 .

This would introduce o8 to the code. This is either a facet of C or a subset of
some facet in C. Either way, the intersection of this facet with M; is ca, a
contradiction.



CASE II: THERE EXISTS EXACTLY ONE A

Proof.

This would introduce caA and oA to the code. These codewords are either
facets of C or subsets of other facets in C. Either way, the intersection of these
facets is oA, a contradiction.



CASE llI: THERE EXISTS A FINITE NUMBER OF AS

Proof.

This would introduce quite a few things to the code. However, just focusing on
a, Ay, and A,, we see that both ca A, and oA;A, are in the code, meaning this
case also results in contradiction. Thus, C must be max intersection complete. O
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Theorem
Let C be a 3-sparse locally good max intersection incomplete code. Then there
must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct
facets M, M,, ..., M,.

Then there must exist some neuron o ¢ C and M;, M; € C such that M; " M; = 0.

The facets M; and M; must be of at least length two to remain distinct, given
their shared o.

However, if M; and M; were of length two, then o would be a mandatory
codeword.
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However, if both M; N M, = o and M; N My, = o, then there would exist a local
obstruction at 0.



Proof.

So M; and M; must be of length three.

However, this could not be the entire code, as this would make o a mandatory
codeword. As C is 3-sparse, there must exist some other facet My, € C such that
M;NM; M = 0.

To remain distinct from M; and M;, M, must contain some neuron T ¢ M;, M;.
However, if both M; N M, = o and M; N My, = o, then there would exist a local
obstruction at 0.

Thus, without loss of generality, there must exist some «a such that
M; N My, = oca. Therefore, as C is 3-sparse we know that M, = cat, completing
the proof. O
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Definition
For a 3-sparse neural code, the reduced code of C, denoted Cq, is the code
containing all length three codewords of C and their subsets that are also in C.

Example
Consider the following neural code:

C=
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67,79, 89, 2, 3, 4,5, 6,7, 8,9, D}.
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Definition
For a 3-sparse neural code, the reduced code of C, denoted Cq, is the code
containing all length three codewords of C and their subsets that are also in C.

Example
Consider the following neural code:

C=
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67,79, 89, 2, 3, 4,5, 6,7, 8,9, D}.

Cred = {123,134, 145, 13, 14, @}

10



WEAPONS OF MASS CONSTRUCTION

Theorem

Let C be a 3-sparse neural code on n neurons. If there exists a closed convex

cover U = {U,<}‘f‘:1 in RY of C,oq such that every set in U can be realized as fully
R~ or higher, then C is open convex.



WEAPONS OF MASS CONSTRUCTION

Theorem

Let C be a 3-sparse neural code on n neurons. If there exists a closed convex

cover U = {U,<}‘f‘:1 in RY of C,oq such that every set in U can be realized as fully
R~ or higher, then C is open convex.

Proof.
Let C be a 3-sparse locally good neural code on n neurons. Suppose that there

exists some fully dimensional closed cover of Creg, denoted U = {U;}! in RA.
We will construct an open cover of C using U.



WEAPONS OF MASS CONSTRUCTION

Proof.

(=
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67,79, 89, 2, 3, 4,5,6,7,8,9, D} .

Ui23 Uss Uiz, Uiy Uiss
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STEP ONE: INTERSECTIONS OF NEURONS IN C,o¢

Proof.

Uio3 Uiz Uiz, 11 Uiss




STEP ONE: INTERSECTIONS OF NEURONS IN C,o¢

Proof.

Using the same epsilonic procedure as was used in Theorem 4.3, we can make
this new realization fully dimensional.

Uiz | Uiz | Uiz | Py | Uiss




STEP TWO: NEURONS IN C BUT NOT Cy

Proof.

The only neurons missing from U are the ones not involved in any triple-wise
intersection. Let A = {ay, &5, ..., @y} C C denote the set of these neurons.
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STEP TWO: NEURONS IN C BUT NOT Cy

Proof.

(=
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 4,8, 49, 58, 67, 79, 89, 2, 3, 4,5, 6,7, 8,9, D}.
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STEP TWO: NEURONS IN C BUT NOT Cy

Proof.

(=
{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67,79, 89, 2,3, 4,5,6,7, 8,9, D }.

Uiz | Uiz | Uizs | Uiy | Uiss




STEP TWO: NEURONS IN C BUT NOT Cy

Proof.

In general, either a; € C oritisn’t. If not, draw it as a subset of ;. If so, draw it
so that it overlaps with ;.

aecC aé&cC

Uiz | Uss | Uizs | Usy | Ungs
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STEP TWO: NEURONS IN C BUT NOT Cy

Proof.

Repeat this process for each 1 < i < n, each time selecting a codeword that
contains a neuron already existing in the realization. This provides us with a
fully dimensional closed realization of C.
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STEP TWO: NEURONS IN C BUT NOT Cy

Proof.

Repeat this process for each 1 < i < n, each time selecting a codeword that
contains a neuron already existing in the realization. This provides us with a

fully dimensional closed realization of C.

Thus, by Theorem 4.3, C is convex.
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Conjecture

Let C be a closed convex neural code on n neurons. Let U = {U;}_ in R? be
an arbitrary open convex cover of C. If filling in the boundary of each U; € U
will always create a set that can only be realized in R or below, then C is
not open convex.
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Conjecture

Let C be a closed convex neural code on n neurons. Let U = {U;}_ in R? be
an arbitrary open convex cover of C. If filling in the boundary of each U; € U
will always create a set that can only be realized in R or below, then C is
not open convex.

Conjecture

Let C be a locally good neural code on n neurons. If C is not open convex, then
any convex realization of C in RY must contain a set that can only be realized
in R92 or below.
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Conjecture

Let C be a closed convex neural code on n neurons. Let U = {U;}_ in R? be
an arbitrary open convex cover of C. If filling in the boundary of each U; € U
will always create a set that can only be realized in R or below, then C is
not open convex.

Conjecture

Let C be a locally good neural code on n neurons. If C is not open convex, then
any convex realization of C in RY must contain a set that can only be realized
in R92 or below.

Conjecture
Let C be a locally good neural code on n neurons. If n < 7, then C must be
either open or closed convex.
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