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Notation

Univariate Trinomials
Let f(x) = c1x

α0 + c2x
α1 + c3x

α2

α0 < α1 < α2

ci ∼ N(0, σi)

generally, α0 = 0
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Notation

Spread

spread(f) := min(α1 − α0, α2 − α1)

α2 − α0

spread(c1xα0 + c2x
α0+α2

2 + c3x
α2) = 0.5

as α1 → α0 or α2, spread(f) → 0
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Trinomial Exponent Ratio

Experimental Consideration
What is the relationship between the spread of a trinomial f and its failure
probability?

Method:
fix α2

iterate α1 from [1, α2 − 1]

1,000,000 trials per ratio
generate new random standard Gaussian coefficients each trial
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Trinomial Exponent Ratio: Results I
f = c1 + c2x

α1 + c3x
100

99 exponent ratios
scipy’s curve_fit function

Figure: α1

100 vs. Failure Probability

h(x) = 0.61353465 + 21.87751589x− 21.86653471x2
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Trinomial Exponent Ratio: Results II

f = c1 + c2x
α1 + c3x

100

99 exponent ratios
h(x) = 0.61353465 + 21.87751589x− 21.86653471x2

f = c1 + c2x
α1 + c3x

25

24 exponent ratios
h(x) = 0.70218905 + 21.39398914x− 21.38648046x2

f = c1 + c2x
α1 + c3x

1987

α1 ∈ [19, 1900]

h(x) = 0.65875168 + 21.56950267x− 21.5027753x2

L. Newman (HMC) Trinomial Failure Regions 26 July 2019 7



Trinomial Exponent Ratio: Results III
f = c1x

24 + c2x
a1 + c3x

626

100 exponent ratios
x-axis 24

α1

Figure: 24
α1

vs. Failure Probability
h(x) = −0.27225719 + 23.51542209x− 21.77854389x2
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Trinomial Exponent Ratio: Conjectures

Experimental Hypotheses

The graph of the failure probability as a function of trinomial spread
is, roughly, a parabola or ellipse

Failure probability appears to never exceed 6%

Failure probability also depends on variance ratios
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Quadratic Variance Ratio

Experimental Consideration
What is the relationship between the failure probability of f , a quadratic
polynomial, and σ2

σ1
, recalling that ci ∼ N(0, σi)?

Method:
100 values of σ2 in [0.1, 10]

1,000,000 trials per ratio
generate c1 and c3 from standard Gaussian distributions, and c2 from
N(0, σ2) each trial
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Quadratic Variance Ratio: Results I
Varying the standard deviation of c2:

σ2 ∈ [0.1, 10]

Figure: Quadratic σ2 vs. Failure Probability

h(x) = −1.03061413 + 15.572038x1.0356945e−1.04617418x + 1.76374323xe−0.20716401x
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Quadratic Variance Ratio: Results II
Varying the standard deviation of c3:

σ3 ∈ [0.1, 100]

Figure: Quadratic σ3 vs. Failure Probability

h(x) = 0.85961511 + 6.15174179x0.13562741e−0.26987804x + 0.35691471xe−0.10525011x
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Variance Ratio for Trinomials with Small Spread

Experimental Consideration
What is the relationship between the failure probability of
f = c1 + c2x

99 + c3x
100 and σ2

σ1
, recalling that ci ∼ N(0, σi)?

Method:
100 values of σ2 in [0.1, 60]

1,000,000 trials per ratio
generate c1 and c3 from standard Gaussian distributions, and c2 from
N(0, σ2) each trial

L. Newman (HMC) Trinomial Failure Regions 26 July 2019 13



Variance Ratio for Trinomials with Small Spread

Experimental Consideration
What is the relationship between the failure probability of
f = c1 + c2x

99 + c3x
100 and σ2

σ1
, recalling that ci ∼ N(0, σi)?

Method:
100 values of σ2 in [0.1, 60]

1,000,000 trials per ratio
generate c1 and c3 from standard Gaussian distributions, and c2 from
N(0, σ2) each trial

L. Newman (HMC) Trinomial Failure Regions 26 July 2019 13



Tight Trinomial Variance Ratio: Results I
Varying the standard deviation of c2:

Figure: σ2 vs. Failure Probability

h(x) = −0.06450709 + 0.18826155x0.55247034e−0.15034146x − 1.03096168xe−1.09906311x
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Tight Trinomial Variance Ratio: Results II
Varying the standard deviation of c1:

Figure: σ1 vs. Failure Probability
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Trinomial Variance Ratio: Conjectures

New Experimental Questions

Can we simplify the fit functions in some way?

Idea: Could using multiple simple piecewise functions approximate
the failure probabilities?
Can we extract meaning from the coefficients of the fit functions?
Idea: Do the coefficients have a relationship to the exponent spread
of the polynomial?
Can we transform the fit functions into upper bounds?
Idea: Can we find specific coefficients that upper bound the failure
probabilities for all exponent spreads?
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Can we simplify the fit functions in some way?

Figure: Piecewise linear and x−k fit functions for failure probability vs. σ
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Piecewise Variance Ratio: σ2 ≤ 1

Experimental Consideration
What is the minimum slope that upper bounds the failure probability when
σ2 ≤ 1?

f(x) = c1 + c2x+ c3x
2

Figure: Linear upper bound and fit lines for failure probability vs. σ ≤ 1
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Piecewise Variance Ratio: σ2 ≤ 1

Experimental Consideration
What is the minimum slope that upper bounds the failure probability when
σ2 ≤ 1, and what is its relationship to the trinomial’s spread?

Method:
10 exponent ratios in [0.1, 1]

10 values of σ2 in [0.1, 1]
100,000 trials per σ2

generate c1 and c3 from standard Gaussian distributions, and c2 from
N(0, σ2) each trial
find upper bound curve of form g(x) = ax

per trinomial exponent ratio, average 10 values of a
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Piecewise Variance Ratio: σ2 ≤ 1 Results

Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio
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Piecewise Variance Ratio: σ2 ≤ 1 Results

g(x) = a

√
max(α1, α2 − α1)

α2
x

Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio
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Piecewise Variance Ratio: σ2 ≥ 1

Experimental Consideration
Finding a function of the form g(x) = ax−k which is an upper bound for
failure probability when σ2 ≥ 1.

Method:
10 exponent ratios in [0.1, 1]

10 values of σ2 in [1, 20]
1,000,000 trials per σ2

generate c1 and c3 from standard Gaussian distributions, and c2 from
N(0, σ2) each trial
fit data to g(x) = ax−k using scipy’s curve_fit function
increment k until g is an upper bound curve

per exponent ratio, average 10 values of k
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Piecewise Variance Ratio: σ2 ≥ 1 Results I

Figure: Upper bound constants and exponents vs. trinomial exponent ratios
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Piecewise Variance Ratio: σ2 ≥ 1

Experimental Consideration
What is the minimum upper bound curve of the form g(x) = ax−0.9 for
failure probability when σ2 ≥ 1.

Method:
10 exponent ratios in [0.1, 1]

10 values of σ2 in [1, 20]

1,000,000 trials per σ2
generate c1 and c3 from standard Gaussian distributions, and c2 from
N(0, σ2) each trial
fit data to g(x) = ax−0.9 using scipy’s curve_fit function
increment a until g is an upper bound curve
select maximum a
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Piecewise Variance Ratio: σ2 ≥ 1 Results II

g(x) = 6.5x−0.9

Figure: f(x) = c1 + c2x+ c3x
2 Figure: f(x) = c1 + c2x

99 + c3x
100
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Further Work

Tighter bound lines (especially for σ ≥ 1)?
Coefficient meaning for σ ≥ 1?

Possible dependence on spread?
Can we establish theoretical bounds that support these experimental
results?
Can we otherwise characterize the polynomials which fail?
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