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ABSTRACT. Let k,p € N with p prime and f€Z[z1,...,z,] be a polynomial in n variables
with degree d. Counting the roots of f over (Z/(p*))" has applications in cryptography,
integer factorization, and coding theory. We extend an algorithm for counting the number
of roots of a univariate polynomial over Z/(p*) to polynomials in n variables over (Z/(p*))™.
We prove a complexity of O(dkp®") for our algorithm.

1. INTRODUCTION

Let k,p € N with p prime and f €Z[zy,...,x,] be a polynomial in n variables with non-
zero degree d. Computing the number of roots of f over (Z/(p*))", denoted by N, x(f), has
applications in cryptography, integer factorization, and coding theory. Previous work has
resulted in an algorithm that can compute the number of roots of a univariate polynomial
with non-zero degree over Z/(p*) in time kd®(klogp)' + o(1) + (dklog® p)'*+°™M [1]. Less is
know regarding algorithms for counting roots of multivariate polynomials over prime power
rings. We extend the algorithm from [1] to arbitrary polynomials in n variables.

Theorem 1.1. Let f(x)(x) € Zlxy, ..., x|, d is the degree of f, and k,p €N with p prime.
Then one can compute #{(x1,...,1,) € (Z/{P")" | f(x1,...,2,) =0} in time O(d kp*™).

Our algorithm reduces counting over (Z/(p*))" to repeated counting over (Z/(p))". We
establish a bound on the number of times we have to count over (Z/(p))™ which leads to
the complexity given in theorem 1.1. We will now introduce some definitions that will be
necessary in our proofs later on. Let x := (z1,...,z,) denote an n-tuple, and Let f(z) €
2|z, ..., x,] be a polynomial in n variables over the integers. Then, for { = ((3,...,(,) € Z"
the multi-dimensional Taylor expansion of f at ( is
f@) = X D ) — ) (i — o)
B1yeenyin

where iy ...,i, are non-negative integers, and D%~ f(x) denotes the multi-dimensional
Hasse derivative, defined as

Dll’Ln ( Z le,...jnfjil . l’%}n) = Z Cj17"'j7l (zi) e

Jiseesdn J1seesdn

(j“)at{l_il ... gInTin
For a prime p, f denotes the mod p reduction of f. Let ¢ € (Z/<p>)" be a root of f. We
say that ¢ is of multiplicity m if m > 1 is the largest integer such that D f(¢) = 0 mod
p for all i1 + ...+ 1, < m. We call ( a nondegenerate root of f if m = 1, and call it a
degenerate root otherwise. As an observation, it is immediate by definition that m < max; d;

Definition 1.2. Let f(z) € Z[x,...,x,] and fix a prime p. Let ord, : Z — NU{0} denote
the usual p-adic valuation with ord,(p) = 1. Then for any degenerate root (y € (F,)" of
f we define s(f, () = ord,(f(Co + px)), the largest power of p dividing f((o + px). Next,
we inductively define a set T, (f) of pairs (fic, kic) as follows: Set (foo,koo) = (f, k).
For i > 1 with (fi—1u ki—1) € Tpu(f) and any degenerate root (;—y € (Z/{p))" of fioin
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with s; 1 1= 5(fi—1,u, 1) € {2, . -7]%‘—1,#}. C= it DGy ke = kiorp — i1 foc(@) =
[psi%lfi—l,u(@—l +p$)} mod pFi<

The elements of the set T, x(f) can be associated with the nodes of a finite, rooted directed
tree which will assist us in performing our complexity analysis. Next, we prove the following
multivariate-version of Hensel’s lemma.

Lemma 1.3. Let f(x) € Z[zy,...,x,). If f(C) =0 mod p’ for some j > 1 and {, mod
p is a nondegenerate root of f, then there are exactly Pt many t € (Z/(p))" such that
(& +pt) =0 mod p*t.

Proof. Consider the taylor expansion of f at ¢, by p’z,

FGt ) = (@) + 9 (#0G) + o GEG) )+ E e D (Gl

i1+ titn>2
= 11G) 49 (#(G)+ - B ) mod p,

as j(iy+...+14,) > j+1forall iy +... 414, > 2. Then t := (t,...t,) is such that (o + tp’)
is a root of f mod p*! if and only if

of

(1) a—m(go)tl +...+ of

oz,

— /(%)

(Co)tn = p—] mod p

As (o mod p is a non-degenerate root of f, then there exists an i such that g—;: # 0 mod
p. The left hand side of (1) does not vanish identically, and thus defines a nontrivial linear
relation in (Z/(p))". Fixing (y, there are exactly p"~! many ¢t € (Z/(p))" satisfying (1). B
For any root (y of f mod p? and k > j we call ¢ € (Z/(p*))™ a lift of ¢, if f(¢) =0 mod p*
and (o = ¢ mod p?. By inductively applying Lemma 1.3 we can obtain:

Proposition 1.4. Let f(z) € Z[vy,...,2,], and k > j > 1. If f(¢o) = 0 mod p’ and {; mod
p is a non-degenerate root of f, then (q lifts to exactly p™ &= roots of f mod p*.

Lemma 1.5. Following the notations above, suppose that Co € (Z/(p))" is a root of f of
finite multiplicity m > 2 and that there is a ¢ € (Z/{p*))™ with (o = ¢ mod p and f(¢) =0
mod p*. Then s(f,{) €2,...m.

Proof. Since ¢, is a degenerate root of f, ng(QO) = 0 mod p for every 2 € 1...n. Then for

i

¢ = (o +po € (Z){pF))" with o := (04, ...0,),

2)
1O = @) +p(5E @0tk g @)+ T e Gt ok

ox
1 i1+ +i+n>2

to have solutions mod p* we need f((y) = 0 mod p?, as the second and the third summand
in equation (2) has order at least 2. Now, as (p is a degenerate root of multiplicity m,
there exists and m-th Hasse derivative: j; + ...+ j, = m, and D7 f((y) # 0 mod p. So
s(f, Co) < Ordp(pjl"!‘---‘i‘jnDjl---jn) =m. B
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2. ALGORITHM

We will now introduce a recurrence relation on f which counts the number of roots of f
over (Z/(p"))".

Lemma 2.1. Let n,(f) denote the number of non-degenerate roots of f over Z/{(p). Then,
provided k > 2 and f is not identically zero mod p, we have

Npi(f) =p* D0 D, (F)+ [ 2 p”"“‘”) + > pUOTIN o (Fre)
Co€(Fp)™ Co€(Fp)™
$(f,C0) >k $(f,60)E{ 2,00 k—1}

Proof. The lifting of the non-degenerate roots of f follows from Proposition 1.4. Now
assume that (o € (Z/(p))" is a degenerate root of f. Write ¢ = (o + po for o := (3 + p(s +
o P2 € (Z){p)", and let s := s(f,(y). Note that by Lemma 1.5, s > 2. Then
by definition, f(¢) = p®fi¢ (o) = 0 mod p* regardless of choice of 0. So there are exactly
"1 values of ¢ € (Z/(p*))" such that {; = ¢ mod p and f(¢) = 0 mod p*. If s < k — 1,
then ( is a root of f if and only if

(3) fic(0) =0 mod p*~*.

But then ¢ = ¢ + plo + ... + p" 71—, mod pF~=*, i.e the rest of the base p digits
Ck—s—+15---,Cr—1 do not appear in equation (3). So the number of possible lifts ¢ of (y
is exactly p"~! times the number of roots ({1 + plo + ... + pF "7 1¢y) € (Z/(p"~*))" of
f1,¢,- This accounts for the third summand in our formula. W

Below is a pseudo-code implementation of our algorithm. f is the polynomial whose roots we
are counting, p is a prime number, k£ is a natural number, and n is the number of variables

in f.

Algorithm 1 Count the number of roots of f over Z/{p*)

countpkMult(f,p,k,n)
stack < roots of f over F,
while stack is not empty do
z < stack.pop
g < f(z +px)
s < s(f,z2)
if s = 1 and z is not degenerate then
count < count 4+ p*~ D=1
else if s > k then
count < count + p
else if s # 0 then
newf <« g/p°
count <— count + p”(s_l)countpkMult(newf,p,k—s,n)
end if
end while
return count

n(k—1)
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In order to count the roots of f over (Z/(p))" we perform a brute force search over (Z/(p))".
In the next section we will determine a bound for the number of times that we will have to
search over (Z/(p))™ which will lead to the complexity stated in theorem 1.1.

3. COMPLEXITY

In order to prove the complexity given in Theorem 1.1, we introduce a tree structure on
Tp,k’(f)‘

Definition 3.1. We can identify the elements of T, (f) with the nodes of a labled rooted
directed tree T ,x(f) defined inductively as follows:
(1) We set foo:= [, koo :=k and let (fop,koo) be the label of the root node of T ,x(f)
(2) The non-root nodes of T ,x(f) are uniquely labelled by each (fi¢, ki) € Tpr(f) with
1>1
(3) There is ans edge from the node (f; ¢, ki¢) to the node (f; .., kj ) if and only ifi = j—1
and there is a degenerate root ¢; € (Z/(p))" of fic with s(fic,G € 2,...,k—1) and
p=C+pG e (Z/p))" |
(4) The label of a directed edge from node (fic, ki) to node (fj,,kj,) is p*Uuc:(=Q/p)=1
The edges of the tree are labled by powers of p in the set p*,...,p*"2 and the labels of the
nodes lie in Zlx] x N

For any root ¢ of f, let m(() denote its multiplicity as previously defined.

Lemma 3.2. (Schwartz-Zzppel Lemma with Multiplicity). Fix a prime p and let n > 1,
d > 0. Suppose f has degree at most d. if f does not vanish entirely, then we have

CG(Z/< ))"m(C) < dp"™!

This enhanced version of the Schwartz—lepel Lemma can be proved by induction. The
complete proof can be found in [2] and [3].

Lemma 3.3. Following the notation in definition 3.1 we claim that the following statements
are true:

(1) The depth of T ,x(f) is at most |51 ].

(2) The degree of the root node of T ,x(f) is at most | %— |

(3) The degree of any non-root node of T ,x(f) labelled (f; ., kj,.) with parent (fic, kic)
and (; = (u—C)/p’, is at most |s(fic, G)p" " /2]. In particular, deg fic < s(fic,G) <

kic—1<kand Y s((fic,G) < deg fiep™™
children of
(fi,¢9k4,¢)

(4) T px(f) has at most Ldp;lJ nodes at depth i > 1 and thus a total of no more than
L%ﬂj [%J + 1 nodes.

Proof. Assertion (1): By definitions 1.2 and 3.1, each (f;,, k;,) whose parent node is
(fic, kic) must satisfy 2 < ke —k;,, < kic—1,and 1 < kj, < k—2foralli > 1. So,
considering any root to leaf path in 7, x(f), it is clear that the depth of T, (f) can be no
greater than 1+ |(k—2—1)/2] = 5]

n—1
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Assertion (2): Since the multiplicity of any degenerate root of f is at least two, by Lemma
3.2, the number of degenerate roots that f can have is bounded above by |dp"~!|. Every
edge leaving the root node of T, x(f) corresponds uniquely to a degenerate root (o of f with
s(f,¢) € {2,...,k}. Therefore the root can have at most degree |dp™!].
Assertion (3): Let s := (fic, (;), then the degree greater than s part of the Taylor expansion
fic(Co+px)

| Z pi1+'”+i"Dil"'i"fi,g(Co)SUZf - .x%

11+...Fin>s
has valuation greater then s. In other words, the coefficients of all the x* terms with |i| > s+1,
must be divisible by p. Thus deg f; ¢ < s. The inequality s < ki —1 < k—1 follows directly
from the definition. As in Lemma 1.5, each s(f;¢,(;) is at most the multiplicity of of the
root (; of fi,g, the final bound is obvious by again applying Lemma 7.
Assertion (4): This is immediate from Assertion (1) and Assertion (3). Bl

At each node of T ,(f) we perform a brute force search for roots of a polynomial over

(Z/(p))™ which dominates the complexity of our algorithm. Each search takes time O(p")
dpn—l
2

and number of searches we do is bounded above by | | 1551 ] +1 which gives our algorithm

a complexity of O(dkp®").
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