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Abstract. Let k, p ∈ N with p prime and f ∈Z[x1, . . . , xn] be a polynomial in n variables
with degree d. Counting the roots of f over (Z/〈pk〉)n has applications in cryptography,
integer factorization, and coding theory. We extend an algorithm for counting the number
of roots of a univariate polynomial over Z/〈pk〉 to polynomials in n variables over (Z/〈pk〉)n.
We prove a complexity of O(dkp2n) for our algorithm.

1. Introduction

Let k, p ∈ N with p prime and f ∈Z[x1, . . . , xn] be a polynomial in n variables with non-
zero degree d. Computing the number of roots of f over (Z/〈pk〉)n, denoted by Np,k(f), has
applications in cryptography, integer factorization, and coding theory. Previous work has
resulted in an algorithm that can compute the number of roots of a univariate polynomial
with non-zero degree over Z/〈pk〉 in time kd3(k log p)1 + o(1) + (dk log2 p)1+o(1) [1]. Less is
know regarding algorithms for counting roots of multivariate polynomials over prime power
rings. We extend the algorithm from [1] to arbitrary polynomials in n variables.

Theorem 1.1. Let f(x)(x)∈Z[x1, . . . , xn], d is the degree of f , and k, p∈N with p prime.
Then one can compute #{(x1, . . . , xn)∈(Z/〈pk〉)n | f(x1, . . . , xn)=0} in time O(d k p2n).

Our algorithm reduces counting over (Z/〈pk〉)n to repeated counting over (Z/〈p〉)n. We
establish a bound on the number of times we have to count over (Z/〈p〉)n which leads to
the complexity given in theorem 1.1. We will now introduce some definitions that will be
necessary in our proofs later on. Let x := (x1, . . . , xn) denote an n-tuple, and Let f(x) ∈
Z[x1, . . . , xn] be a polynomial in n variables over the integers. Then, for ζ = (ζ1, . . . , ζn) ∈ Zn
the multi-dimensional Taylor expansion of f at ζ is

f(x) =
∑

i1,...,in

Di1...inf(ζ)(x1 − ζ1)i1 . . . (xn − ζn)in

where i1 . . . , in are non-negative integers, and Di1...inf(x) denotes the multi-dimensional
Hasse derivative, defined as

Di1...in

( ∑
j1,...,jn

cj1,...jnx
j1
1 . . . x

jn
n

)
:=

∑
j1,...,jn

cj1,...jn
(
j1
i1

)
. . .
(
jn
in

)
xj1−i11 . . . xjn−inn

For a prime p, f̃ denotes the mod p reduction of f . Let ζ ∈ (Z/
〈
p
〉
)n be a root of f̃ . We

say that ζ is of multiplicity m if m ≥ 1 is the largest integer such that Di1...inf(ζ) = 0 mod

p for all i1 + . . . + in < m. We call ζ a nondegenerate root of f̃ if m = 1, and call it a
degenerate root otherwise. As an observation, it is immediate by definition that m < maxi di

Definition 1.2. Let f(x) ∈ Z[x1, . . . , xn] and fix a prime p. Let ordp : Z −→ N∪{0} denote
the usual p-adic valuation with ordp(p) = 1. Then for any degenerate root ζ0 ∈ (Fp)n of

f̃ we define s(f, ζ0) := ordp(f(ζ0 + px)), the largest power of p dividing f(ζ0 + px). Next,
we inductively define a set Tp,k(f) of pairs (fi,ζ , ki,ζ) as follows: Set (f0,0, k0,0) := (f, k).

For i ≥ 1 with (fi−1,µ, ki−1,µ) ∈ Tp,k(f) and any degenerate root ζi−1 ∈ (Z/
〈
p
〉
)n of f̃i−1,µ
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with si−1 := s(fi−1,µ, ζi−1) ∈
{

2, . . . , ki−1,µ
}

. ζ = µ + pi−1ζi−1 ki,ζ = ki−1,µ − si−1 fi,ζ(x) :=[
1

psi−1 fi−1,µ(ζi−1 + px)
]

mod pki,ζ

The elements of the set Tp,k(f) can be associated with the nodes of a finite, rooted directed
tree which will assist us in performing our complexity analysis. Next, we prove the following
multivariate-version of Hensel’s lemma.

Lemma 1.3. Let f(x) ∈ Z[x1, . . . , xn]. If f(ζ0) = 0 mod pj for some j ≥ 1 and ζ0 mod

p is a nondegenerate root of f̃ , then there are exactly pn−1 many t ∈ (Z/〈p〉)n such that
f(ζ0 + pt) = 0 mod pj+1.

Proof. Consider the taylor expansion of f at ζ0 by pjx,

f(ζ0 + pjx) = f(ζ0) + pj
(

∂f
∂x1

(ζ0) + . . . ∂f
∂xn

(ζ0)

)
+

∑
i1+...+i+n≥2

pj(i1+...+in)Di1...inf(ζ0)x
i1
1 . . . x

in
n

= f(ζ0) + pj
(

∂f
∂x1

(ζ0) + . . . ∂f
∂xn

(ζ0)

)
mod pj+1,

as j(i1 + . . .+ in) ≥ j+ 1 for all i1 + . . .+ in ≥ 2. Then t := (t1, . . . tn) is such that (ζ0 + tpj)
is a root of f mod pj+1 if and only if

(1)
∂f

∂x1
(ζ0)t1 + . . .+

∂f

∂xn
(ζ0)tn =

−f(ζ0)

pj
mod p

As ζ0 mod p is a non-degenerate root of f̃ , then there exists an i such that ∂f
∂xi
6= 0 mod

p. The left hand side of (1) does not vanish identically, and thus defines a nontrivial linear
relation in (Z/〈p〉)n. Fixing ζ0, there are exactly pn−1 many t ∈ (Z/〈p〉)n satisfying (1). �
For any root ζ0 of f mod pj and k ≥ j we call ζ ∈ (Z/〈pk〉)n a lift of ζ0, if f(ζ) = 0 mod pk

and ζ0 = ζ mod pj. By inductively applying Lemma 1.3 we can obtain:

Proposition 1.4. Let f(x) ∈ Z[x1, . . . , xn], and k ≥ j ≥ 1. If f(ζ0) = 0 mod pj and ζ0 mod

p is a non-degenerate root of f̃ , then ζ0 lifts to exactly p(n−1)(k−j) roots of f mod pk.

Lemma 1.5. Following the notations above, suppose that ζ0 ∈ (Z/〈p〉)n is a root of f̃ of
finite multiplicity m ≥ 2 and that there is a ζ ∈ (Z/〈pk〉)n with ζ0 = ζ mod p and f(ζ) = 0
mod pk. Then s(f, ζ0) ∈ 2, . . .m.

Proof. Since ζ0 is a degenerate root of f̃ , ∂f
∂xi

(ζ0) = 0 mod p for every i ∈ 1 . . . n. Then for

ζ = ζ0 + pσ ∈ (Z/〈pk〉)n with σ := (σ1, . . . σn),

(2)

f(ζ) = f(ζ0) + p

(
∂f

∂x1
(ζ0)σ1 + . . .+

∂f

∂xn
(ζ0)σn

)
+

∑
i1+...+i+n≥2

pi1+...+inDi1...inf(ζ0)σ
i1
1 . . . σ

in
n

to have solutions mod pk we need f(ζ0) = 0 mod p2, as the second and the third summand
in equation (2) has order at least 2. Now, as ζ0 is a degenerate root of multiplicity m,
there exists and m-th Hasse derivative: j1 + . . . + jn = m, and Dj1...jnf(ζ0) 6= 0 mod p. So
s(f, ζ0) ≤ ordp(p

j1+...+jnDj1...jn) = m. �
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2. Algorithm

We will now introduce a recurrence relation on f which counts the number of roots of f
over (Z/〈pk〉)n.

Lemma 2.1. Let np(f) denote the number of non-degenerate roots of f̃ over Z/〈p〉. Then,

provided k ≥ 2 and f̃ is not identically zero mod p, we have

Np,k(f) = p(k−1)(n−1)np(f) +

( ∑
ζ0∈(Fp)n
s(f,ζ0)≥k

pn(k−1)

)
+

∑
ζ0∈(Fp)n

s(f,ζ0)∈{2,...,k−1}

pn(s(f,ζ0)−1)Np,k−s(f,ζ0)(f1,ζ0)

Proof. The lifting of the non-degenerate roots of f̃ follows from Proposition 1.4. Now
assume that ζ0 ∈ (Z/〈p〉)n is a degenerate root of f̃ . Write ζ = ζ0 + pσ for σ := ζ1 + pζ2 +
. . . + pk−2ζk−1 ∈ (Z/〈p〉)n, and let s := s(f, ζ0). Note that by Lemma 1.5, s ≥ 2. Then
by definition, f(ζ) = psf1,ζ0(σ) = 0 mod pk regardless of choice of σ. So there are exactly
pn(k−1) values of ζ ∈ (Z/〈pk〉)n such that ζ0 = ζ mod p and f(ζ) = 0 mod pk. If s ≤ k − 1,
then ζ is a root of f if and only if

(3) f1,ζ0(σ) = 0 mod pk−s.

But then σ = ζ1 + pζ2 + . . . + pk−s−1ζk−s mod pk−s, i.e the rest of the base p digits
ζk−s−+1, . . . , ζk−1 do not appear in equation (3). So the number of possible lifts ζ of ζ0
is exactly pn(s−1) times the number of roots (ζ1 + pζ2 + . . . + pk−s−1ζk−s) ∈ (Z/〈pk−s〉)n of
f1,ζ0 . This accounts for the third summand in our formula. �

Below is a pseudo-code implementation of our algorithm. f is the polynomial whose roots we
are counting, p is a prime number, k is a natural number, and n is the number of variables
in f .

Algorithm 1 Count the number of roots of f over Z/
〈
pk
〉

countpkMult(f,p,k,n)
stack ← roots of f over Fp
while stack is not empty do

z ← stack.pop
g ← f(z + px)
s ← s(f, z)
if s = 1 and z is not degenerate then

count ← count + p(n−1)(k−1)

else if s ≥ k then
count ← count + pn(k−1)

else if s 6= 0 then
newf ← g/ps

count ← count + pn(s−1)countpkMult(newf,p,k-s,n)
end if

end while
return count
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In order to count the roots of f̃ over (Z/〈p〉)n we perform a brute force search over (Z/〈p〉)n.
In the next section we will determine a bound for the number of times that we will have to
search over (Z/〈p〉)n which will lead to the complexity stated in theorem 1.1.

3. Complexity

In order to prove the complexity given in Theorem 1.1, we introduce a tree structure on
Tp,k(f).

Definition 3.1. We can identify the elements of Tp,k(f) with the nodes of a labled rooted
directed tree τ p,k(f) defined inductively as follows:

(1) We set f0,0 := f , k0,0 := k and let (f0,0, k0,0) be the label of the root node of τ p,k(f)
(2) The non-root nodes of τ p,k(f) are uniquely labelled by each (fi,ζ , ki,ζ) ∈ Tp,k(f) with

i ≥ 1
(3) There is ans edge from the node (fi,ζ , ki,ζ) to the node (fj,µ, kj,µ) if and only if i = j−1

and there is a degenerate root ζi ∈ (Z/〈p〉)n of f̃i,ζ with s(fi,ζ , ζi ∈ 2, . . . , k − 1) and
µ = ζ + pjζi ∈ (Z/〈pi〉)n

(4) The label of a directed edge from node (fi,ζ , ki,ζ) to node (fj,µ, kj,µ) is ps(fi,ζ ,(µ−ζ)/p
i)−1

The edges of the tree are labled by powers of p in the set p1, . . . , pk−2 and the labels of the
nodes lie in Z[x]× N

For any root ζ of f̃ , let m(ζ) denote its multiplicity as previously defined.

Lemma 3.2. (Schwartz-Zippel Lemma with Multiplicity). Fix a prime p and let n ≥ 1,

d ≥ 0. Suppose f̃ has degree at most d. if f̃ does not vanish entirely, then we have

ζ ∈ (Z/〈p〉)n∑ m(ζ) ≤ dpn−1

This enhanced version of the Schwartz-Zippel Lemma can be proved by induction. The
complete proof can be found in [2] and [3].

Lemma 3.3. Following the notation in definition 3.1 we claim that the following statements
are true:

(1) The depth of τ p,k(f) is at most bk−1
2
c.

(2) The degree of the root node of τ p,k(f) is at most bdpn−1

2
c

(3) The degree of any non-root node of τ p,k(f) labelled (fj,µ, kj,µ) with parent (fi,ζ , ki,ζ)

and ζi := (µ−ζ)/pi, is at most bs(fi,ζ , ζi)pn−1/2c. In particular, deg f̃i,ζ ≤ s(fi,ζ , ζi) ≤
ki,ζ − 1 ≤ k and

∑
children of
(fi,ζ ,ki,ζ)

s((fi,ζ , ζi) ≤ deg f̃i,ζp
n−1

(4) τ p,k(f) has at most bdpn−1

2
c nodes at depth i ≥ 1 and thus a total of no more than

bdpn−1

2
cbk−1

2
c+ 1 nodes.

Proof . Assertion (1): By definitions 1.2 and 3.1, each (fj,µ, kj,µ) whose parent node is
(fi,ζ , ki,ζ) must satisfy 2 ≤ ki,ζ − kj,µ ≤ ki,ζ − 1, and 1 ≤ kj,µ ≤ k − 2 for all i ≥ 1. So,
considering any root to leaf path in τ p,k(f), it is clear that the depth of τ p,k(f) can be no
greater than 1 + b(k − 2− 1)/2c = bk−1

2
c.
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Assertion (2): Since the multiplicity of any degenerate root of f̃ is at least two, by Lemma

3.2, the number of degenerate roots that f̃ can have is bounded above by bdpn−1c. Every

edge leaving the root node of τ p,k(f) corresponds uniquely to a degenerate root ζ0 of f̃ with
s(f, ζ0) ∈ {2, . . . , k}. Therefore the root can have at most degree bdpn−1c.
Assertion (3): Let s := (fi,ζ , ζi), then the degree greater than s part of the Taylor expansion
fi,ζ(ζ0 + px) : ∑

i1+...+in>s

pi1+...+inDi1...infi,ζ(ζ0)x
i1
1 . . . x

in
n

has valuation greater then s. In other words, the coefficients of all the xi terms with |i| ≥ s+1,

must be divisible by p. Thus deg ˜fi,ζ ≤ s. The inequality s ≤ ki,ζ − 1 ≤ k− 1 follows directly
from the definition. As in Lemma 1.5, each s(fi,ζ , ζi) is at most the multiplicity of of the

root ζi of f̃i,ζ , the final bound is obvious by again applying Lemma 7.
Assertion (4): This is immediate from Assertion (1) and Assertion (3). �

At each node of τ p,k(f) we perform a brute force search for roots of a polynomial over
(Z/〈p〉)n which dominates the complexity of our algorithm. Each search takes time O(pn)

and number of searches we do is bounded above by bdpn−1

2
cbk−1

2
c+1 which gives our algorithm

a complexity of O(dkp2n).
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