Counting Points on Arbitrary Curves over Prime Power Rings

Caleb Robelle

Texas A&M University

July 23, 2019

Caleb Robelle (UMBC)

• Finite fields

•
$$\mathbb{F}_{p} = \mathbb{Z}/\langle p \rangle = \{0, 1, 2, 3, ..., p-1\}$$

• Finite fields

•
$$\mathbb{F}_{p} = \mathbb{Z}/\langle p \rangle = \{0, 1, 2, 3, ..., p-1\}$$

• Prime Power Rings

•
$$\mathbb{Z}/\langle p^k \rangle = \left\{0, 1, 2, 3, \dots p^k - 1\right\}$$

- Finite fields
 - $\mathbb{F}_{p} = \mathbb{Z}/\left\langle p \right\rangle = \left\{0, 1, 2, 3, ..., p 1\right\}$
- Prime Power Rings
 - $\mathbb{Z}/\left\langle p^{k}\right\rangle =\left\{ 0,1,2,3,...p^{k}-1
 ight\}$

+ and \cdot over $\mathbb{Z}/\langle n \rangle$

Let a and b $\in \mathbb{Z}/\langle n
angle$

Finite fields

•
$$\mathbb{F}_{p} = \mathbb{Z}/\langle p \rangle = \{0, 1, 2, 3, ..., p-1\}$$

Prime Power Rings

•
$$\mathbb{Z}/\left\langle p^{k}\right\rangle =\left\{ 0,1,2,3,...p^{k}-1
ight\}$$

+ and \cdot over $\mathbb{Z}/\langle n \rangle$

Let a and b $\in \mathbb{Z}/\langle n
angle$

• $a + b := a + b \mod n$

Finite fields

•
$$\mathbb{F}_{p} = \mathbb{Z}/\langle p \rangle = \{0, 1, 2, 3, ..., p-1\}$$

n

• Prime Power Rings

•
$$\mathbb{Z}/\langle p^k \rangle = \left\{0, 1, 2, 3, \dots p^k - 1\right\}$$

+ and \cdot over $\mathbb{Z}/\langle n \rangle$

Let a and
$$b \in \mathbb{Z}/\langle n \rangle$$

• $a + b := a + b \mod d$

•
$$a \cdot b := a \cdot b \mod n$$

For $f \in \mathbb{Z}[x]$ let $\tilde{f} := f \mod p$

• $\zeta \in \mathbb{F}_p$ is a degenerate root of \tilde{f} if $\tilde{f}'(\zeta) = 0$

For $f \in \mathbb{Z}[x]$ let $\tilde{f} := f \mod p$

• $\zeta \in \mathbb{F}_p$ is a degenerate root of \tilde{f} if $\tilde{f}'(\zeta) = 0$

Lemma

Suppose $k \in \mathbb{N}$, $f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z}/\langle p \rangle)[x]$, and $\zeta_0 \in \mathbb{Z}/\langle p \rangle$ is a non-degenerate root of $\tilde{f} := f \mod p$. Then there is a unique $\zeta \in \mathbb{Z}/\langle p^k \rangle$ with $\zeta_0 = \zeta \mod p$, and $f(\zeta) = 0 \mod p^k$.

For $f \in \mathbb{Z}[x]$ let $\tilde{f} := f \mod p$

• $\zeta \in \mathbb{F}_p$ is a degenerate root of \tilde{f} if $\tilde{f}'(\zeta) = 0$

Lemma

Suppose $k \in \mathbb{N}$, $f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z}/\langle p \rangle)[x]$, and $\zeta_0 \in \mathbb{Z}/\langle p \rangle$ is a non-degenerate root of $\tilde{f} := f \mod p$. Then there is a unique $\zeta \in \mathbb{Z}/\langle p^k \rangle$ with $\zeta_0 = \zeta \mod p$, and $f(\zeta) = 0 \mod p^k$.

Consider
$$f(x) = 7x^2 + 3x + 6$$
 over $\mathbb{Z}/\langle 2^{15} \rangle$

For $f \in \mathbb{Z}[x]$ let $\tilde{f} := f \mod p$

• $\zeta \in \mathbb{F}_p$ is a degenerate root of \tilde{f} if $\tilde{f}'(\zeta) = 0$

Lemma

Suppose $k \in \mathbb{N}$, $f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z}/\langle p \rangle)[x]$, and $\zeta_0 \in \mathbb{Z}/\langle p \rangle$ is a non-degenerate root of $\tilde{f} := f \mod p$. Then there is a unique $\zeta \in \mathbb{Z}/\langle p^k \rangle$ with $\zeta_0 = \zeta \mod p$, and $f(\zeta) = 0 \mod p^k$.

Consider
$$f(x) = 7x^2 + 3x + 6$$
 over $\mathbb{Z}/\langle 2^{15} \rangle$
• $\tilde{f}(x) = x^2 + x$

For $f \in \mathbb{Z}[x]$ let $\tilde{f} := f \mod p$

• $\zeta \in \mathbb{F}_p$ is a degenerate root of \tilde{f} if $\tilde{f}'(\zeta) = 0$

Lemma

Suppose $k \in \mathbb{N}$, $f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z}/\langle p \rangle)[x]$, and $\zeta_0 \in \mathbb{Z}/\langle p \rangle$ is a non-degenerate root of $\tilde{f} := f \mod p$. Then there is a unique $\zeta \in \mathbb{Z}/\langle p^k \rangle$ with $\zeta_0 = \zeta \mod p$, and $f(\zeta) = 0 \mod p^k$.

Consider
$$f(x) = 7x^2 + 3x + 6$$
 over $\mathbb{Z}/\langle 2^{15} \rangle$

•
$$\tilde{f}(x) = x^2 + x$$

•
$$\tilde{f}(1) = \tilde{f}(0) = 0 \mod 2$$

For $f \in \mathbb{Z}[x]$ let $\tilde{f} := f \mod p$

• $\zeta \in \mathbb{F}_p$ is a degenerate root of \tilde{f} if $\tilde{f}'(\zeta) = 0$

Lemma

Suppose $k \in \mathbb{N}$, $f \in \mathbb{Z}[x]$ is not identically zero in $(\mathbb{Z}/\langle p \rangle)[x]$, and $\zeta_0 \in \mathbb{Z}/\langle p \rangle$ is a non-degenerate root of $\tilde{f} := f \mod p$. Then there is a unique $\zeta \in \mathbb{Z}/\langle p^k \rangle$ with $\zeta_0 = \zeta \mod p$, and $f(\zeta) = 0 \mod p^k$.

Consider
$$f(x) = 7x^2 + 3x + 6$$
 over $\mathbb{Z}/\langle 2^{15} \rangle$

•
$$\tilde{f}(x) = x^2 + x$$

•
$$ilde{f}(1) = ilde{f}(0) = 0 \mod 2$$

•
$$f(6641) = f(7402) = 0 \mod 2^{15}$$

For $f \in \mathbb{Z}[x_1, ..., x_n]$ let $\tilde{f} := f \mod p$ • $\zeta \in (\mathbb{F}_p)^n$ is a degenerate root of \tilde{f} iff $\frac{\partial \tilde{f}}{\partial x_i}(\zeta) = 0$ for all i For $f \in \mathbb{Z}[x_1, ..., x_n]$ let $\tilde{f} := f \mod p$ • $\zeta \in (\mathbb{F}_p)^n$ is a degenerate root of \tilde{f} iff $\frac{\partial \tilde{f}}{\partial x_i}(\zeta) = 0$ for all i

Hensel's Lemma

Let $f(x) \in \mathbb{Z}[x_1, ..., x_n]$. If $f(\zeta_0) \equiv 0 \mod p^j$ for $j \ge 1$, and $(\zeta_0 \mod p)$ is a non-degenerate root of \tilde{f} , then there are exactly p^{n-1} many $t \in (\mathbb{Z}/\langle p \rangle)^n$ such that $f(\zeta_0 + tp^j) \equiv 0 \mod p^{j+1}$.

For $f \in \mathbb{Z}[x_1, ..., x_n]$ let $\tilde{f} := f \mod p$ • $\zeta \in (\mathbb{F}_p)^n$ is a degenerate root of \tilde{f} iff $\frac{\partial \tilde{f}}{\partial x_i}(\zeta) = 0$ for all i

Hensel's Lemma

Let $f(x) \in \mathbb{Z}[x_1, ..., x_n]$. If $f(\zeta_0) \equiv 0 \mod p^j$ for $j \ge 1$, and $(\zeta_0 \mod p)$ is a non-degenerate root of \tilde{f} , then there are exactly p^{n-1} many $t \in (\mathbb{Z}/\langle p \rangle)^n$ such that $f(\zeta_0 + tp^j) \equiv 0 \mod p^{j+1}$.

Proposition

Let $f(x) \in \mathbb{Z}[x_1, ..., x_n]$. If $f(\zeta_0) \equiv 0 \mod p^j$ for $j \ge 1$, and $(\zeta_0 \mod p)$ is a non-degenerate root of \tilde{f} , then ζ_0 lifts to exactly $p^{(n-1)(k-j)}$ roots of f over $(\mathbb{Z}/\langle p^k \rangle)^n$.

• Consider f = 13x + 10y + z over $(\mathbb{Z}/\langle 3^4 \rangle)^3$.

- Consider f = 13x + 10y + z over $(\mathbb{Z}/\langle 3^4 \rangle)^3$.
- *f̃* = x + y + z has 9 non-degenerate roots over (ℤ/⟨3⟩)³
 (0,0,0), (1,1,1), (2,2,2), and all permutations of (0,1,2)

- Consider f = 13x + 10y + z over $(\mathbb{Z}/\langle 3^4 \rangle)^3$.
- $ilde{f} = x + y + z$ has 9 non-degenerate roots over $(\mathbb{Z}/\langle 3
 angle)^3$
 - (0,0,0), (1,1,1), (2,2,2), and all permutations of (0,1,2)
- Each lifts to $p^{(n-1)(k-j)}$ roots

- Consider f = 13x + 10y + z over $(\mathbb{Z}/\langle 3^4 \rangle)^3$.
- $ilde{f} = x + y + z$ has 9 non-degenerate roots over $(\mathbb{Z}/{\langle 3
 angle})^3$
 - (0,0,0), (1,1,1), (2,2,2), and all permutations of (0,1,2)
- Each lifts to $p^{(n-1)(k-j)}$ roots

• f has $9\cdot 3^{(3-1)(4-1)}=6561$ roots over $(\mathbb{Z}/\big<3^4\big>)^3$

Lifting Degenerate Roots

• Let $f \in \mathbb{Z}[x_1, ..., x_n]$

- Let $f \in \mathbb{Z}[x_1, ..., x_n]$
- For any degenerate root $\zeta_0 \in (\mathbb{F}_p)^n$ of \tilde{f} define $s(f, \zeta_0) := ord_p(f(\zeta_0 + px))$

- Let $f \in \mathbb{Z}[x_1, ..., x_n]$
- For any degenerate root $\zeta_0 \in (\mathbb{F}_p)^n$ of \tilde{f} define $s(f, \zeta_0) := ord_p(f(\zeta_0 + px))$
- Inductively define a set $T_{p,k}(f)$ of pairs $(f_{i,\zeta}, k_{i,\zeta})$ as follows:

- Let $f \in \mathbb{Z}[x_1, ..., x_n]$
- For any degenerate root $\zeta_0 \in (\mathbb{F}_p)^n$ of \tilde{f} define $s(f, \zeta_0) := ord_p(f(\zeta_0 + px))$
- Inductively define a set $T_{p,k}(f)$ of pairs $(f_{i,\zeta}, k_{i,\zeta})$ as follows:

• Set
$$(f_{0,0}, k_{0,0}) := (f, k)$$
.

- Let $f \in \mathbb{Z}[x_1, ..., x_n]$
- For any degenerate root $\zeta_0 \in (\mathbb{F}_p)^n$ of \tilde{f} define $s(f, \zeta_0) := ord_p(f(\zeta_0 + px))$
- Inductively define a set $T_{p,k}(f)$ of pairs $(f_{i,\zeta}, k_{i,\zeta})$ as follows:

• Set
$$(f_{0,0}, k_{0,0}) := (f, k)$$
.

• For $i \geq 1$ with $(f_{i-1,\mu}, k_{i-1,\mu}) \in T_{p,k}(f)$ and any degenerate root $\zeta_{i-1} \in (\mathbb{Z}/\langle p \rangle)^n$ of $f_{i-1,\mu}$ with $s_{i-1} := s(f_{i-1,\mu}, \zeta_{i-1}) \in \{2, ..., k_{i-1,\mu}\}$

- Let $f \in \mathbb{Z}[x_1, ..., x_n]$
- For any degenerate root $\zeta_0 \in (\mathbb{F}_p)^n$ of \tilde{f} define $s(f, \zeta_0) := ord_p(f(\zeta_0 + px))$
- Inductively define a set $T_{p,k}(f)$ of pairs $(f_{i,\zeta}, k_{i,\zeta})$ as follows:

• Set
$$(f_{0,0}, k_{0,0}) := (f, k)$$
.

• For $i \ge 1$ with $(f_{i-1,\mu}, k_{i-1,\mu}) \in T_{p,k}(f)$ and any degenerate root $\zeta_{i-1} \in (\mathbb{Z}/\langle p \rangle)^n$ of $\tilde{f}_{i-1,\mu}$ with $s_{i-1} := s(f_{i-1,\mu}, \zeta_{i-1}) \in \{2, ..., k_{i-1,\mu}\}$ • $\zeta = \mu + p^{i-1}\zeta_{i-1}$

- Let $f \in \mathbb{Z}[x_1, ..., x_n]$
- For any degenerate root $\zeta_0 \in (\mathbb{F}_p)^n$ of \tilde{f} define $s(f, \zeta_0) := ord_p(f(\zeta_0 + px))$
- Inductively define a set $T_{p,k}(f)$ of pairs $(f_{i,\zeta}, k_{i,\zeta})$ as follows:

• Set
$$(f_{0,0}, k_{0,0}) := (f, k)$$
.

• For $i \geq 1$ with $(f_{i-1,\mu}, k_{i-1,\mu}) \in T_{p,k}(f)$ and any degenerate root $\zeta_{i-1} \in (\mathbb{Z}/\langle p \rangle)^n$ of $\tilde{f}_{i-1,\mu}$ with $s_{i-1} := s(f_{i-1,\mu}, \zeta_{i-1}) \in \{2, ..., k_{i-1,\mu}\}$

•
$$\zeta = \mu + p^{i-1}\zeta_{i-1}$$

• $k_{i,\zeta} = k_{i-1,\mu} - s_{i-1}$

• Let
$$f \in \mathbb{Z}[x_1, ..., x_n]$$

- For any degenerate root $\zeta_0 \in (\mathbb{F}_p)^n$ of \tilde{f} define $s(f, \zeta_0) := ord_p(f(\zeta_0 + px))$
- Inductively define a set $T_{p,k}(f)$ of pairs $(f_{i,\zeta}, k_{i,\zeta})$ as follows:

• Set
$$(f_{0,0}, k_{0,0}) := (f, k)$$
.

• For $i \geq 1$ with $(f_{i-1,\mu}, k_{i-1,\mu}) \in T_{p,k}(f)$ and any degenerate root $\zeta_{i-1} \in (\mathbb{Z}/\langle p \rangle)^n$ of $\tilde{f}_{i-1,\mu}$ with $s_{i-1} := s(f_{i-1,\mu}, \zeta_{i-1}) \in \{2, ..., k_{i-1,\mu}\}$

•
$$\zeta = \mu + p^{i-1}\zeta_{i-1}$$

• $k_{i,\zeta} = k_{i-1,\mu} - s_{i-1}$
• $f_{i,\zeta}(x) := \left[\frac{1}{p^{s_{i-1}}}f_{i-1,\mu}(\zeta_{i-1} + px)\right] \mod p^{k_{i,\zeta}}$

• We can associate the elements of $T_{p,k}(f)$ with a rooted directed tree

- We can associate the elements of $T_{p,k}(f)$ with a rooted directed tree
 - $(f_{0,0}, k_{0,0})$ is the root node

- We can associate the elements of $T_{p,k}(f)$ with a rooted directed tree
 - $(f_{0,0}, k_{0,0})$ is the root node
 - The non-root nodes of the tree are uniquely labeled by each $(f_{i,\zeta}, k_{i,\zeta}) \in T_{p,k}(f)$ with $i \ge 1$

- We can associate the elements of $T_{p,k}(f)$ with a rooted directed tree
 - $(f_{0,0}, k_{0,0})$ is the root node
 - The non-root nodes of the tree are uniquely labeled by each $(f_{i,\zeta}, k_{i,\zeta}) \in T_{p,k}(f)$ with $i \ge 1$
 - There is an edge from $(f_{j,\mu}, k_{j,\mu})$ to $(f_{i,\zeta}, k_{i,\zeta})$ if and only if j = i 1, and there is degenerate root ζ_{i-1} of $\tilde{f}_{j,\mu}$ with $s(f_{j,\mu}, \zeta_{i-1}) \in \{2, ..., k_{i,\mu} - 1\}$, and $\zeta = \mu + p^{i-1}\zeta_{i-1}$

• Let ζ_0 be a degenerate root of \tilde{f}

- Let ζ_0 be a degenerate root of \widetilde{f}
 - if $s(f,\zeta_0)=1$ or 0 then ζ_0 does not lift

- Let ζ_0 be a degenerate root of \widetilde{f}
 - if $s(f, \zeta_0) = 1$ or 0 then ζ_0 does not lift
 - if $s(f, \zeta_0) \ge k$ then ζ_0 lifts to $p^{n(k-1)}$ roots

- Let ζ_0 be a degenerate root of \tilde{f}
 - if $s(f,\zeta_0)=1$ or 0 then ζ_0 does not lift
 - if $s(f, \zeta_0) \ge k$ then ζ_0 lifts to $p^{n(k-1)}$ roots
 - if $s(f, \zeta_0) \in \{2, ..., k-1\}$ then ζ_0 lifts to $p^{s(f_{0,0}, \zeta_0)} N_{p,k-s(f_{0,0}, \zeta_0)}(f_{1,\zeta_0})$ roots
$$N_{p,k}(f) = p^{(k-1)(n-1)} n_{p,k}(f) + \left(\sum_{\substack{\zeta_0 \in (\mathbb{F}_p)^n \\ s(f,\zeta_0) \ge k}} p^{n(k-1)}\right) + \left(\sum_{\substack{\zeta_0 \in (\mathbb{F}_p)^n \\ s(f,\zeta_0) \in \{2,...,k-1\}}} p^{n(s(f,\zeta_0)-1)} N_{p,k-s(f,\zeta_0)}(f_{1,\zeta_0})\right)$$

How many points does $f(x,y) = 3x^2y^2 + 14xy^2 + y^2$ have over $(\mathbb{Z}/\langle 2^4 \rangle)^2$?

How many points does $f(x, y) = 3x^2y^2 + 14xy^2 + y^2$ have over $(\mathbb{Z}/\langle 2^4 \rangle)^2$? • $\tilde{f}(x, y) = (x - 1)^2y^2$

How many points does $f(x, y) = 3x^2y^2 + 14xy^2 + y^2$ have over $(\mathbb{Z}/\langle 2^4 \rangle)^2$?

•
$$\tilde{f}(x,y) = (x-1)^2 y^2$$

• Roots: $\{(0,0), (1,0), (1,1)\}$

How many points does $f(x, y) = 3x^2y^2 + 14xy^2 + y^2$ have over $(\mathbb{Z}/\langle 2^4 \rangle)^2$?

•
$$\tilde{f}(x,y) = (x-1)^2 y^2$$

• Roots: $\{(0,0), (1,0), (1,1)\}$

•
$$s(f,(0,0)) = 2$$
, $s(f,(1,0)) = 4$, $s(f,(1,1)) = 2$

How many points does $f(x, y) = 3x^2y^2 + 14xy^2 + y^2$ have over $(\mathbb{Z}/\langle 2^4 \rangle)^2$?

•
$$\tilde{f}(x,y) = (x-1)^2 y^2$$

- Roots: $\{(0,0), (1,0), (1,1)\}$
- s(f,(0,0)) = 2, s(f,(1,0)) = 4, s(f,(1,1)) = 2
- (1,0) lifts to $2^{2(4-1)}$ roots over $(\mathbb{Z}/\big<2^4\big>)^2$

How many points does $f(x, y) = 3x^2y^2 + 14xy^2 + y^2$ have over $(\mathbb{Z}/\langle 2^4 \rangle)^2$?

•
$$\tilde{f}(x,y) = (x-1)^2 y^2$$

- Roots: $\{(0,0), (1,0), (1,1)\}$
- s(f,(0,0)) = 2, s(f,(1,0)) = 4, s(f,(1,1)) = 2
- (1,0) lifts to $2^{2(4-1)}$ roots over $(\mathbb{Z}/\left\langle 2^{4} \right\rangle)^{2}$
- ullet Construct nodes for $\zeta=ig(0,0)$ and $\mu=ig(1,1ig)$

How many points does $f(x, y) = 3x^2y^2 + 14xy^2 + y^2$ have over $(\mathbb{Z}/\langle 2^4 \rangle)^2$?

•
$$\tilde{f}(x,y) = (x-1)^2 y^2$$

- Roots: $\{(0,0), (1,0), (1,1)\}$
- s(f,(0,0)) = 2, s(f,(1,0)) = 4, s(f,(1,1)) = 2
- (1,0) lifts to $2^{2(4-1)}$ roots over $(\mathbb{Z}/\left\langle 2^{4} \right\rangle)^{2}$
- ullet Construct nodes for $\zeta=ig(0,0)$ and $\mu=ig(1,1ig)$

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

• $\tilde{f}_{1,\zeta} = x^2$

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

• $\tilde{f}_{1,\zeta} = x^2$

• roots: {(0,0), (1,0)}

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

•
$$\tilde{f}_{1,\zeta} = x^2$$

- roots: $\{(0,0),(1,0)\}$
- $s(f_{1,\zeta},(0,0)) = 2$ and $s(f_{1,\zeta},(1,0)) = 2$

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

•
$$\tilde{f}_{1,\zeta} = x^2$$

- roots: $\{(0,0), (1,0)\}$
- $s(f_{1,\zeta},(0,0)) = 2$ and $s(f_{1,\zeta},(1,0)) = 2$
- Each root lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\big<2^2\big>)^2$

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

•
$$\tilde{f}_{1,\zeta} = x^2$$

- roots: $\{(0,0), (1,0)\}$
- $s(f_{1,\zeta},(0,0)) = 2$ and $s(f_{1,\zeta},(1,0)) = 2$
- Each root lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\big<2^2\big>)^2$

$(f_{1,\mu}, k_{1,\mu}) = (y^2, 2)$

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

•
$$\tilde{f}_{1,\zeta} = x^2$$

- roots: $\{(0,0), (1,0)\}$
- $s(f_{1,\zeta},(0,0)) = 2$ and $s(f_{1,\zeta},(1,0)) = 2$
- Each root lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\big<2^2\big>)^2$

$$(f_{1,\mu}, k_{1,\mu}) = (y^2, 2)$$

• $\tilde{f}_{1,\mu} = y^2$

$$(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$

•
$$\tilde{f}_{1,\zeta} = x^2$$

- roots: $\{(0,0), (1,0)\}$
- $s(f_{1,\zeta},(0,0)) = 2$ and $s(f_{1,\zeta},(1,0)) = 2$
- \bullet Each root lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\big<2^2\big>)^2$

$$(f_{1,\mu}, k_{1,\mu}) = (y^2, 2)$$

• $\tilde{f}_{1,\mu} = y^2$

• roots: $\{(0,0), (0,1)\}$

$$\begin{aligned} &(f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2) \\ &\bullet \ \tilde{f}_{1,\zeta} = x^2 \\ &\bullet \ \text{roots:} \ \{(0,0), (1,0)\} \\ &\bullet \ s(f_{1,\zeta}, (0,0)) = 2 \ \text{and} \ s(f_{1,\zeta}, (1,0)) = 2 \\ &\bullet \ \text{Each root lifts to} \ 2^{2(2-1)} \ \text{roots over} \ (\mathbb{Z}/\langle 2^2 \rangle)^2 \\ &(f_{1,\mu}, k_{1,\mu}) = (y^2, 2) \\ &\bullet \ \tilde{f}_{1,\mu} = y^2 \\ &\bullet \ \text{roots:} \ \{(0,0), (0,1)\} \end{aligned}$$

•
$$s(f_{1,\mu},(0,0)) = 2$$
 and $s(f_{1,\mu},(0,1)) = 2$

2

()

(

$$f_{1,\zeta}, k_{1,\zeta}) = (x^2, 2)$$
• $\tilde{f}_{1,\zeta} = x^2$
• roots: $\{(0,0), (1,0)\}$
• $s(f_{1,\zeta}, (0,0)) = 2$ and $s(f_{1,\zeta}, (1,0)) = 2$
• Each root lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\langle 2^2 \rangle)^2$
 $f_{1,\mu}, k_{1,\mu}) = (y^2, 2)$
• $\tilde{f}_{1,\mu} = y^2$

- roots: {(0,0), (0,1)}
- $s(f_{1,\mu},(0,0)) = 2$ and $s(f_{1,\mu},(0,1)) = 2$
- Each root lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\langle 2^2 \rangle)^2$

2

- Left node has 8 roots
- Right node has 8 roots
- Total count = $64 + 2^2(8) + 2^2(8) = 128$ over $(\mathbb{Z}/\langle 2^4 \rangle)^2$

•
$$\tilde{f}(x,y) = x^2 + y^2$$

•
$$\tilde{f}(x,y) = x^2 + y^2$$

• Roots: {(0,0),(1,1)}

•
$$\tilde{f}(x,y) = x^2 + y^2$$

• Roots: $\{(0,0),(1,1)\}$

•
$$s(f,(0,0)) = 2$$
 and $s(f,(1,1)) = 1$

- $\tilde{f}(x,y) = x^2 + y^2$
- Roots: $\{(0,0),(1,1)\}$
- s(f,(0,0)) = 2 and s(f,(1,1)) = 1
- (0,0) lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\big<2^{2}\big>)^{2}$

- $\tilde{f}(x,y) = x^2 + y^2$
- Roots: $\{(0,0),(1,1)\}$
- s(f,(0,0)) = 2 and s(f,(1,1)) = 1
- (0,0) lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\big<2^{2}\big>)^{2}$
- (1,1) lifts to none

- $\tilde{f}(x,y) = x^2 + y^2$
- Roots: $\{(0,0),(1,1)\}$
- s(f,(0,0)) = 2 and s(f,(1,1)) = 1
- (0,0) lifts to $2^{2(2-1)}$ roots over $(\mathbb{Z}/\big<2^{2}\big>)^{2}$
- (1,1) lifts to none

Roots of f over (Z/(2²))²: {(0,0),(0,2),(2,0),(2,2)}

• The number of nodes in the tree is bounded by $\left|\frac{dp^{n-1}}{2}\right| \left\lfloor \frac{k-1}{2} \right\rfloor + 1$

- The number of nodes in the tree is bounded by $\left\lfloor \frac{dp^{n-1}}{2} \right\rfloor \left\lfloor \frac{k-1}{2} \right\rfloor + 1$
- At each node we need to count the number of points over \mathbb{F}_p

- The number of nodes in the tree is bounded by $\left|\frac{dp^{n-1}}{2}\right| \left\lfloor \frac{k-1}{2} \right\rfloor + 1$
- At each node we need to count the number of points over \mathbb{F}_p
- For curves (n = 2) one can attain complexity dkp^{1+o(1)} if one has access to algorithms which count over 𝔽_p in time (log p)^{O(1)}

• Improve root finding for \tilde{f} over \mathbb{F}_p

- Improve root finding for \tilde{f} over \mathbb{F}_p
 - Currently using brute force

- Improve root finding for \tilde{f} over \mathbb{F}_p
 - Currently using brute force
 - Should move to more recent algorithms with complexity $O(\sqrt{p})$.

- Improve root finding for \tilde{f} over \mathbb{F}_p
 - Currently using brute force
 - Should move to more recent algorithms with complexity $O(\sqrt{p})$.
- Computing the intermediate f_{i,ζ} can be sped up with some interpolation tricks.

- Improve root finding for \tilde{f} over \mathbb{F}_p
 - Currently using brute force
 - Should move to more recent algorithms with complexity $O(\sqrt{p})$.
- Computing the intermediate f_{i,ζ} can be sped up with some interpolation tricks.
- In one variable, [BLQ13] showed that $O(dk \log p)$ is possible. Two variable case is open!

The End