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Partitions of even/odd rank

We utilize our effective bound on α(n) to resolve the following
conjecture:

Conjecture (Hou and Jagadeesan [2], 2017)

If r = 0 (resp. r = 1), then we have that

N(r , 2; a)N(r , 2; b) > N(r , 2; a + b)

for all a, b ≥ 11 (resp 12).

Hou and Jagadeesan demonstrated a similar result for the
modulo-three rank-counting functions N(r , 3; n) for r = 0, 1, 2, but
their methods do not work modulo two.
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Growth of N(r , 2; n)

Theorem (Gomez-Zhu)

For n ≥ 4,

N(r , 2; n) =
H(n)

36l(n)2

(
1− 1

l(n)

)
+ (−1)rR2(n)

where H(n) := π2
√

3e l(n) and

|R2(n)| ≤ (8.17× 1030)e l(n)/2
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Growth of N(r , 2; n)

We will make use of an effective bound on the partition function
due to Lehmer:

Theorem (Lehmer, 1938)

For all n ≥ 1,

p(n) =
2
√

3

24n − 1

(
1− 1

l(n)

)
e l(n) + Ep(n)

where |Ep(n)| ≤ (1313)e l(n)/2.

Kevin Gomez Bounds for Coefficients of the f (q) Mock Theta Function



Sketch of Proof

We substitute the asymptotic formulas for p(n) and α(n) into the
relation

N(r , 2; n) =
p(n) + (−1)rα(n)

2

and then bound the resulting error

R2(n) := (−1)n−1 π√
6l(n)

e l(n)/2 +
1

2
(Ep(n) + E (n)).
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Bounding N(r , 2; n)

We will use the previous theorem to prove the following crucial
inequalities:

Lemma (Gomez-Zhu)

For r = 0 (resp. r = 1), we have that

H(n)

36l(n)2

(
1− 1

l(n)

)2

< N(r , 2; n) <
H(n)

36l(n)2

(
1− 1

l(n)2

)
for all n ≥ 16 (resp. 15).

This lemma places N(r , 2; n) into a “nice” window, one which we
manipulate to resolve the conjecture.
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Sketch of Proof

By our previous theorem,

H(n)

36l(n)2

(
1− 1

l(n)

)
− |R2(n)| < N(r , 2; n)

and

N(r , 2; n) <
H(n)

36l(n)2

(
1− 1

l(n)

)
+ |R2(n)| .

Thus, we can bound N(r , 2; n) for large enough n

H(n)

36l(n)2

(
1− 1

l(n)

)2

< N(r , 2; n) <
H(n)

36l(n)2

(
1− 1

l(n)2

)
so long as the coefficient of e l(n) bounding |R2(n)| is not too large.
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Sketch of Proof

How large is too large? Given that |R2(n)| ≤ (8.17× 1030)e l(n), we
need n large enough to satisfy

8.17× 1030 <
π2
√

3

36l(n)3

(
1− 1

l(n)

)
e l(n)/2.

Computation shows that n > 4647 will do, but we require our
bounds to hold for significantly smaller n to resolve the conjecture.

We thus analyze the remaining n < 4647 using the Online
Encyclopedia of Integer Sequences, which contains the values of
p(n) and α(n) for 1 ≤ n ≤ 104, and find that N(r , 2; n) falls into
our window for n ≥ 15 when r = 0 (resp. n ≥ 16 when r = 1).
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Proving the Conjecture

We now prove the complete conjecture. Assume 16 ≤ a ≤ b and
let b = Ca where C ≥ 1. We have just demonstrated that

N(r , 2; a)N(r , 2;Ca) >
H(a)H(Ca)

1296l(a)2l(Ca)2

(
1− 1

l(a)

)2(
1− 1

l(Ca)

)2

and

N(r , 2; a + Ca) <
H(a + Ca)

36l(a + Ca)2

(
1− 1

l(a + Ca)2

)
.

Thus, we need only find a such that our lower bound for
N(r , 2; a)N(r , 2;Ca) exceeds our upper bound for N(r , 2; a + Ca).
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Proving the Conjecture

This is equivalent to finding a such that

eTa(C) >
12
√

3l(a)2l(Ca)2

π2l(a + Ca)2
Sa(C ),

where
Ta(C ) := l(a) + l(Ca)− l(a + Ca)

and

Sa(C ) :=

(
1− 1

l(a+Ca)2

)
(

1− 1
l(a)

)2 (
1− 1

l(Ca)

)2
.

Or, taking logarithms of both sides,

Ta(C ) > log

(
12
√

3l(a)2l(Ca)2

π2l(a + Ca)2

)
+ log Sa(C ).
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Proving the Conjecture

We first observe that, as functions of C , Ta is strictly increasing
and Sa is strictly decreasing, so we need only find a which satisfy
our inequality for C = 1

Ta(1) > log

(
12
√

3l(a)2l(Ca)2

π2l(a + Ca)2

)
+ log Sa(1).

We then make use of the fact that l(Ca)2/l(a + Ca)2 ≤ 1 for all a
since l(a + Ca) > l(Ca) to reduce our inequality to

Ta(1) > log

(
12
√

3l(a)2

π2

)
+ log Sa(1).
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Proving the Conjecture

For which a is this final relation true? We calculate Ta(1) and
Sa(1) and find that a ≥ 16 suffice, and thus the conjecture is
proven for such a, b ≥ 16.

The remaining cases of 11 ≤ a, b ≤ 15 (resp. 12 ≤ a, b ≤ 15) for
r = 0 (resp. r = 1) are then checked manually by comparing
N(r , 2; a), N(r , 2; b), and N(r , 2; a + b).
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Further Speculation

With this result, we might ask if we can obtain similar convexity
results for other moduli? That is, do we have, for t > 3 and
0 ≤ r < t,

N(r , t; a)N(r , t; b) > N(r , t; a + b)

for all a, b ≥ C (t), where C (t) > 0 is an explicit constant
depending only on the modulus t?

If we were able to find finite algebraic formulas describing N(r , t; n)
analogous to ours for larger t, this conjecture would be resolved as
in the case of t = 2. However, no such formulas are yet known.
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