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Abstract. We compute effective bounds for α(n), the Fourier coefficients of Ramunujan’s
mock theta function f(q) utilizing a finite algebraic formula due to Brunier and Schwagen-
scheidt [1]. We then use these bounds to prove a conjecture of Hou and Jagadeesan [2] on
the convexity of the even and odd partition rank counting functions.

1. Introduction and Statement of Results

For a nonnegative integer n, a partition of n is a finite list of nondecreasing positive
integers λ = (λ1, λ2, . . . , λk) such that λ1 + λ2 + · · · + λk = n. The partition number p(n)
denotes the number of partitions of n which has been of large interest to number theorists.

Given a partition λ of n, we can define the rank of λ as λk−k. In words, this is the largest
part of the partition minus the number of parts. For any n, we can consider N(r, t;n) which
counts the number of partitions of n that have rank equal to r (mod t).

For the case of t = 2, we analyze partitions with even or odd rank, captured by the
coefficients α(n) of Ramanujan’s mock theta function

f(q) := 1 +
∞∑
n=0

qn
2

(1 + q)2(1 + q2)2 . . . (1 + qn)2

= 1 +
∞∑
n=0

α(n)qn

for q := e2πiz, where α(n) = N(0, 2;n)−N(1, 2;n).
In this paper, we will prove the following asymptotic formula for α(n) with an effective

bound on the error term:

Theorem 1.1. Let Dn := −24n+1 be the fundamental discriminant and l(n) := π
√
|Dn|/6.

Then for all n ≥ 1,

α(n) = (−1)n+1

√
6√

24n− 1
el(n)/2 + E(n)

where

|E(n)| < (4.30× 1023)2q(n) |Dn|2 el(n)/3

with

q(n) :=
log(|Dn|)

|log log(|Dn|)− 1.1714|

In 1966, Andrews and Dragonette [3, pp. 456] conjectured a Rademacher-type infinite
series for α(n). This conjecture was proved by Bringmann and Ono [4], who obtained the
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following formula:

(1.1) α(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1

2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I1/2

(
π
√

24n− 1

12k

)
where A2k(n) is a certain twisted Kloosterman-type sum and I1/2 is the I-Bessel function
of order 1/2. One can easily show that the k = 1 term in (1.1) agrees with the main term
in Theorem 1.1. Since (1.1) is only conditionally convergent, it is very difficult to bound.
Using a different, finite algebraic formula for α(n) due to Alfes [5], Masri [6, Theorem 1.3]
gave an asymptotic formula for α(n) with a power-saving error term. The exponent in this
bound was later improved by Ahlgren and Dunn [7, Theorem 1.3] by bounding the series
(1.1) directly.

Using Theorem 1.1, we look to show a certain convexity property for N(r, 2;n). In par-
ticular, we aim to prove a conjecture of Hou and Jagadeesan in [2]

Conjecture 1. If r = 0 (resp. r = 1), then we have that

N(r, 2; a)N(r, 2; b) > N(r, 2; a+ b)

for all a, b ≥ 11 (resp 12).

Hou and Jagadeesan [2, Theorem 1.1] proved a similar convexity bound modulo 3; however,
their techniques do not extend to modulus two. Here, we overcome these difficulties using
Theorem 1.1 and prove the following:

Theorem 1.2. Conjecture 1 is true.

We also demonstrate effective equidistribution of partition ranks modulo 2, improving
upon the results of Masri [6] and Males [8] (see Corollary 5.2). Masri proved equidistribution
of partition ranks modulo 2 with a power-saving error term, however his results were not
effective, and so could not be applied towards Conjecture 1.

We now describe our approach to Theorem 1.1. To give an effective bound on the error
term for α(n), we will use a formula for α(n) which expresses it as a trace over singular
moduli. To state this formula, consider the weight zero weakly-holomorphic modular form
for Γ0(6) defined by

(1.2) F (z) := − 1

40

E4(z) + 4E4(2z)− 9E4(3z)− 36E4(6z)

(η(z)η(2z)η(3z)η(6z))2
= q−1 − 4− 83q − 296q2 + . . . .

Brunier and Schwagenscheidt [1, Theorem 3.1] proved

Theorem (Brunier/Schwagenscheidt). For n ≥ 1, we have

α(n) = − 1√
|Dn|

Im(S(n))

where

S(n) :=
∑
[Q]

F (τQ).

Here, the sum is over the Γ0(6) equivalence classes of discriminant Dn positive definite,
integral binary quadratic forms Q = [a, b, c] such that 6 | a and b ≡ 1 (mod 12), and τQ is
the Heegner point given by the root Q(τQ, 1) in the complex upper half-plane H.
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Our proof of Theorem 1.1 is inspired by work of Locus-Dawsey and Masri [9], who used
a similar algebraic formula due Ahlgren and Andersen [10] for the Andrews smallest-parts
function to give an asymptotic formula for spt(n) with an effective bound on the error term
and prove several conjectural inequalities of Chen [11].

Organization. The paper is organized as follows. In Section 2, we review some facts
regarding quadratic forms and Heegner points. In Section 3, we derive the Fourier expansion
of F (z) and effective bounds on its coefficients. In Section 4, we prove Theorem 1.1. In
Section 5, we discuss corollaries to Theorem 1.1. Finally, in Section 6, we prove Theorem
1.2.

Acknowledgements. We would like to thank Dr. Riad Masri, Dr. Matthew Young, and
Agniva Dasgupta for their support in this work. We especially thank Narissara Khaochim for
her contributions to the proof of Proposition 3.2 and Andrew Lin for very helpful comments.
This research was completed in the 2020 REU in the Department of Mathematics at Texas
A&M University, supported by NSF grant DMS-1757872.

2. Quadratic Forms and Heegner Points

Let N be a positive integer and D be a negative integer discriminant coprime to N . Let
QD,N be the set of positive definite, integral binary quadratic forms

Q(X, Y ) = [a, b, c](X, Y ) = aX2 + bXY + cY 2

with discriminant b2 − 4ac = D < 0 with a ≡ 0 (mod N). The congruence subgroup Γ0(N)
acts on QD,N by

Q ◦ σ = [aσ, bσ, cσ]

with σ =

(
w x
y z

)
∈ Γ0(N), where

aσ = aw2 + bwy + cy2

bσ = 2awx+ b(wz + xy) + 2cyz

cσ = ax2 + bxz + cz2.

Given a solution r (mod 2N) of r2 ≡ D (mod 4N), we define the subset of forms

QD,N,r := {Q = [a, b, c] ∈ QD,N | b ≡ r (mod 2N)}.

We can also consider the subset Qprim
D,N of primitive quadratic forms in QD,N . These are

the forms such that
gcd(a, b, c) = 1.

We see that Γ0(N) also acts on Qprim
D,N and the number of Γ0(N) equivalence classes is given

by the class number h(D).
To each form Q ∈ QD,N , we associate a Heegner point τQ which is the root of Q(X, 1)

given by

τQ =
−b+

√
D

2a
∈ H.

The Heegner points τQ are compatible with the action of Γ0(N) in the sense that if σ ∈ Γ0(N),
then

(2.1) σ(τQ) = τQ◦σ−1 .
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3. Fourier Expansion of F (z)

Let Dn = −24n+ 1 for n ∈ Z+ and define the trace of F (z) by

S(n) :=
∑

[Q]∈QDn,6,1/Γ0(6)

F (τQ).

Proceeding as in [9, Section 3], we decompose S(n) as a linear combination involving traces
of primitive forms. Let ∆ < 0 be a discriminant with ∆ ≡ 1 (mod 24) and define the class
polynomials

H∆(X) :=
∏

[Q]∈Q∆,6,1/Γ0(6)

(X − F (τQ))

and
Ĥ∆,r(F ;X) :=

∏
[Q]∈Qprim

∆,6,r/Γ0(6)

(X − F (τQ)).

Let {W`}`|6 be the group of Atkin-Lehner operators for Γ0(6). We have by [1, pp. 47]

(3.1) F |0W` = β(`)F

where β(`) = 1 if ` = 1, 2 and β(`) = −1 if ` = 3, 6.
Using these eigenvalues we modify [12, Lemma 3.7] to get the following:

Lemma 3.1. We have the decomposition

H∆(X) =
∏
u>0
u2|∆

ε(u)h(∆/u2)Ĥ∆/u2,1(F ; ε(u)X)

where ε(u) = 1 if u ≡ 1, 7 (mod 12) and ε(u) = −1 if u ≡ 5, 11 (mod 12).

Comparing coefficients on both sides of Lemma 3.1 yields the decomposition

(3.2) S(n) =
∑
u>0
u2|Dn

ε(u)Su(n)

where
Su(n) :=

∑
[Q]∈Qprim

Dn/u2,6,1
/Γ0(6)

F (τQ).

We now express Su(n) as a trace involving primitive forms of level 1. As in [9, Section 3],
we let C6 denote the following set of right coset representatives of Γ0(6) in SL2(Z):

γ∞ :=

(
1 0
0 1

)
γ1/3,r :=

(
1 0
3 1

)(
1 r
0 1

)
, r = 0, 1

γ1/2,s :=

(
1 1
2 3

)(
1 s
0 1

)
, s = 0, 1, 2

γ0,t :=

(
0 −1
1 0

)(
1 t
0 1

)
, t = 0, 1, 2, 3, 4, 5

where γ∞(∞), γ1/3,r(∞) = 1/3, γ1/2,s(∞) = 1/2, and γ0,t(∞) = 0.
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Recall that a form Q = [aQ, bQ, cQ] ∈ Q∆,1 is reduced if

|bQ| ≤ aQ ≤ cQ,

and if either |bQ| = aQ or aQ = cQ, then bQ ≥ 0. Let Q∆ denote a set of primitive, reduced

forms representing the equivalence classes in Qprim
∆,1 /SL2(Z). For each Q ∈ Q∆, there is a

unique choice of representative γQ ∈ C6 such that

[Q ◦ γ−1
Q ] ∈ Qprim

∆,6,1/Γ0(6).

This induces a bijection

Q∆ −→ Qprim
∆,6,1/Γ0(6)

Q 7−→ [Q ◦ γ−1
Q ];

(3.3)

see [13, pp. 505], or more concretely, [14, Lemma 3], where an explicit list of the matrices
γQ ∈ C6 is given.

Using the bijection (3.3) and the compatibility relation (2.1) for Heegner points, the trace
Su(n) can be expressed as

(3.4) Su(n) =
∑

[Q]∈Qprim

Dn/u2,6,1
/Γ0(6)

F (τQ) =
∑

Q∈QDn/u2

F (γQ(τQ)).

Therefore, to study the asymptotic distribution of Su(n), we need the Fourier expansion
of F (z) with respect to γ∞, γ1/3,r, γ1/2,s, and γ0,t.

We first find the Fourier expansion of F (z) at the cusp ∞.

Proposition 3.2. The Fourier expansion of F (z) at the cusp ∞ is

F (z) =
∞∑

n=−1

a(n)e(nz)

where a(−1) = 1, a(0) = −4 and for n ≥ 1,

a(n) =
2π√
n

∑
`|6

β(`)√
`

∑
c>0

c≡0 (mod 6/`)
(c,`)=1

c−1S(−¯̀, n; c)I1

(
4π
√
n

c
√
`

)
,

where

β(`) :=

{
1, ` = 1, 2

−1, ` = 3, 6,

I1 is the I-Bessel function of order 1, and S(a, b; c) is the ordinary Kloosterman sum defined
as follows

S(a, b; c) :=
∑

d (mod c)
(c,d)=1

e

(
ad̄+ bd

c

)
,

d̄ is the multiplicative inverse of d (mod c).
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Proof. Define the function

PF (z) := 2
∑
`|6

β(`)F1(W`z, 1, 0)

where F1(z, 1, 0) is the Poincare series

F1(z, 1, 0) :=
1

2

∑
γ∈Γ∞\Γ0(6)

[M0,1/2(4πy)e(−x)] |0 γ

for Mκ,µ the usual Whittaker function. Then by a straightforward calculation, we have

PF (z) := 2
∑
`|6

β(`)
∑

γ∈Γ∞\Γ0(6)

g(γW`z)

where

g(z) := ψ(y)e(−z),

and

ψ(y) := π
√
yI1/2(2πy)e−2πy.

Then arguing as in [15, Section 2], we get the Fourier expansion

PF (z) = e(−z)− e(−z̄) + bF (0) +
∞∑
n=1

bF (−n)e(−nz̄) +
∞∑
n=1

bF (n)e(nz),(3.5)

where

bF (0) := 4π2
∑
`|6

β(`)

`

∑
c>0

c≡0 (mod 6/`)
(c,`)=1

c−2S(−¯̀, 0; c),

and for n > 0

bF (−n) :=
2π√
n

∑
`|6

β(`)√
`

∑
c>0

c≡0 (mod 6/`)
(c,`)=1

c−1S(−¯̀,−n; c)J1

(
4π
√
n

c
√
`

)
,

and

bF (n) :=
2π√
n

∑
`|6

β(`)√
`

∑
c>0

c≡0 (mod 6/`)
(c,`)=1

c−1S(−¯̀, n; c)I1

(
4π
√
n

c
√
`

)
.

By (1.2), we have a(−1) = 1 and a(0) = −4 so that

F |0γ∞(z) = e(−z)− 4 +
∞∑
n=1

a(n)e(nz).

The Atkin-Lehner operators for Γ0(6) are given by

W1 =

(
1 0
0 1

)
, W2 =

1√
2

(
2 −1
6 −2

)
, W3 =

1√
3

(
3 1
6 3

)
, W6 =

1√
6

(
0 −1
6 0

)
.
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For each ` | 6 and v = 6/`, let V` =
√
`W` and

A` =

(
1

width of the cusp 1/v
0

0 1

)
.

We have

cusp 1/v ∞ ' 1/6 1/3 1/2 0 ' 1

` 1 2 3 6

V`

(
1 0
0 1

) (
2 −1
6 −2

) (
3 1
6 3

) (
0 −1
6 0

)

A`

(
1 0
0 1

) (
1/2 0
0 1

) (
1/3 0
0 1

) (
1/6 0
0 1

)

V`A`

(
1 0
0 1

) (
1 −1
3 −2

) (
1 1
2 3

) (
0 −1
1 0

)

Proceeding as in [9, pp. 10], we have

γ∞ = V1A1, γ1/3,r = V2A2

(
1 r + 1
0 1

)
, γ1/2,s = V3A3

(
1 s
0 1

)
, γ0,t = V4A4

(
1 t
0 1

)
.

By (3.1), F (V`z) = F (z) for ` = 1, 2 and F (V`z) = −F (z) for ` = 3, 6. Hence, if ζ6 := e(1/6)
is a primitive sixth root of unity, then

F |0γ∞(z) = F (z) = e(−z)− 4 +
∞∑
n=1

a(n)e(nz)

F |0γ1/3,r(z) = F

(
z + r + 1

2

)
= ζ3−3r

6 e(−z/2)− 4 +
∞∑
n=1

ζ
3n(r+1)
6 a(n)e(nz/2)

F |0γ1/2,s(z) = −F
(
z + s

3

)
= ζ3−2s

6 e(−z/3) + 4 +
∞∑
n=1

ζ3+2ns
6 a(n)e(nz/3)

F |0γ0,t(z) = −F
(
z + t

6

)
= ζ3−t

6 e(−z/6) + 4 +
∞∑
n=1

ζ3+nt
6 a(n)e(nz/6)

Meanwhile, a calculation using the definition of PF (z) and the group law on the Atkin-
Lehner operators shows that

PF (W`z) = β(`)PF (z),(3.6)
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and hence

PF |0γ∞(z) = PF (z) = e(−z) +O(1)

PF |0γ1/3,r(z) = PF
(
z + r + 1

2

)
= ζ3−3r

6 e(−z/2) +O(1)

PF |0γ1/2,s(z) = −PF
(
z + s

3

)
= ζ3−2s

6 e(−z/3) +O(1)

PF |0γ0,t(z) = −PF
(
z + t

6

)
= ζ3−t

6 e(−z/6) +O(1)

From the preceding computations we find that F and PF have the same principal parts
in the cusps of Γ0(6). Therefore, F − PF is a bounded harmonic function on a compact
Riemann surface, and hence constant. In particular, we have F − PF = CF for a constant
CF where

CF = −4− bF (0) +
∞∑
n=1

a(n)e(nz) + e(−z̄)−
∞∑
n=1

bF (−n)e(−nz̄)−
∞∑
n=1

bF (n)e(nz).

Take the limit of both sides as Im(z)→∞ to get

CF = −4− bF (0).

To compute bF (0), we begin as in [9, Lemma 3.1], utilizing

S(−¯̀, 0; c) = µ(c)

to obtain

bF (0) = 4π2
∑
`|6

β(`)

`

∑
c>0

c≡0 (mod 6/l)
(c,`)=1

µ(c)

c2
.

For each ` | 6, the rightmost sum then reduces to

∑
c>0

c≡0 (mod 6/l)
(c,`)=1

µ(c)

c2
=
`2

36

∞∑
d=1

(d,`)=1

µ(6d/`)

`2
=

1

ζ(2)


1/24 ` = 1

−1/6 ` = 2

−3/8 ` = 3

3/2 ` = 6.

The evaluation ζ(2) = π2/6 then grants

bF (0) = 24

(
1

24
− 1

12
+

1

8
− 1

4

)
= −4.

It follows that CF = 0 and hence F (z) = PF (z). Thus by comparing the Fourier expansion
of F (z) and PF (z), we obtain a(n) = bF (n) for every n ≥ 1, bF (−1) = 1, and bF (−n) = 0
for every n ≥ 2. �

We conclude this section by giving an effective bound for the Fourier coefficients a(n) for
n ≥ 1.
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Lemma 3.3. For n ≥ 1,

|a(n)| ≤ Ce(4π
√
n),

where

C := 8
√

6π3/2 + 16π2ζ2(3/2).

Proof. We utilize the proof of [9, Lemma 3.1], which bounds similar coefficients

a′(n) = 2π
∑
`|6

µ(`)√
`

∑
c>0

c≡0 (mod 6/`)
(c,`)=1

S(−˜̀, n; c)

c
I1

(
4π
√
n

c
√
`

)

by C
√
ne(4π

√
n) for the given C; our result follows then from |µ(`)| = |β(`)| = 1 for all ` | 6

and multiplication by n−1/2. �

4. Proof of Theorem 1.1

Given a form Q ∈ Q∆ and corresponding coset representative γQ ∈ C6, let hQ ∈ {1, 2, 3, 6}
be the width of the cusp γQ(∞), and let ζQ and φn,Q be the sixth roots of unity defined as
follows:

Table 1

cusp γQ(∞) ∞ ' 1/6 1/3 1/2 0 ' 1

ζQ 1 ζ3−3r
6 ζ3−2s

6 ζ3−t
6

φn,Q 1 ζ
3n(r+1)
6 ζ3+2ns

6 ζ3+nt
6

Then from the calculation in Proposition 3.2 we can write

(4.1) F |0γQ(z) = ζQe(−z/hQ)− 4β(hQ) +
∞∑
n=1

φn,Qa(n)e(nz/hQ).

Now, recall the Brunier-Schwagenscheidt formula [1],

(4.2) α(n) = − 1√
|Dn|

Im(S(n)).

We use this to give an effective bound on S(n) and hence obtain our result for α(n). By
(3.2) and (3.4),

S(n) =
∑
u>0
u2|Dn

ε(u)Su(n)

=
∑
u>0
u2|Dn

ε(u)
∑

[Q]∈Qprim

Dn/u2,6,1
/Γ0(6)

F (τQ)

=
∑
u>0
u2|Dn

ε(u)
∑

[Q]∈QDn/u2

F |0γQ(τQ)
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which, by (4.1), yields

S(n) =
∑
u>0
u2|Dn

ε(u)
∑

Q∈QDn/u2

ζQe(−τQ/hQ) =
∑

Q∈QDn

ζQe(−τQ/hQ) + E1(n) + E2(n)

where

E1(n) :=
∑
u>1
u2|Dn

ε(u)
∑

Q∈QDn/u2

ζQe(−τQ/hQ)

and

E2(n) := 4β(hQ)
∑
u>0
u2|Dn

ε(u)h(Dn/u
2) +

∞∑
n=1

a(n)
∑
u>0
u2|Dn

ε(u)φn,Qe(nτQ/hQ).

To analyze the main term, note that for any Q = [aQ, bQ, cQ] ∈ QDn/u2 , we have

(4.3) aQhQ ≡ 0 (mod 6)

and

(4.4) e(−τQ/hQ) = ζ
bQ
2aQhQ

exp

(
π
√
|Dn| /u2

aQhQ

)
We consider those forms Q ∈ QDn with aQhQ = 6 and aQhQ = 12. We examine Table 2,

which contains the value of cQ for those forms Q ∈ Qprim
Dn,6,1

/Γ0(6) with 1 ≤ aQ ≤ 12.

Table 2

aQ\bQ ±1 ±3 ±5 ±7 ±9 ±11

1 6n

2 3n

3 2n

4 3n
2

3n+1
2

5 6n
5

6n+2
5

6 n n+ 1

7 6n
7

6n+2
7

6n+6
7

8 3n
4

3n+1
4

3n+3
4

3n+6
4

9 2n
3

2n+2
3

2n+4
3

10 3n
5

3n+1
5

3n+6
5

3n+10
5

11 6n
11

6n+2
11

6n+6
11

6n+12
11

6n+20
11

12 n
2

n+1
2

n+2
2

n+5
2

The forms with aQhQ = 6 are then, via [14, Table 1],

Q1 = [1, 1, 6n], Q2 = [2, 1, 3n], Q3 = [3, 1, 2n], Q4 = [6, 1, n]
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with coset representatives

γQ1 = γ0,1, γQ2 = γ1/2,−1, γQ3 = γ1/3,0, γQ4 = γ∞.

Similarly, the forms with aQhQ = 12 are

Q0
5 = [2,−1, 3n] Q1

5 = [2,−1, 3n]

Q0
6 = [4, 1, 3n/2] Q1

6 = [4,−3, (3n+ 1)/2]

Q0
7 = [6,−5, n+ 1] Q1

7 = [6,−5, n+ 1]

Q0
8 = [12, 1, n/2] Q1

8 = [12,−11, (n+ 5)/2]

with coset representatives

γQ0
5

= γ0,0 γQ1
5

= γ0,3

γQ0
6

= γ 1
2
,1 γQ1

6
= γ 1

2
,2

γQ0
7

= γ 1
3
,0 γQ1

7
= γ 1

3
,1

γQ0
8

= γ∞ γQ1
8

= γ∞.

Thus, for n ≡ r (mod 2), write

∑
Q∈QDn

ζQe(−τQ/hQ) =
4∑
i=1

ζQi
e(−τQi

/hQi
) +

8∑
i=5

ζQr
i
e(−τQr

i
/hQr

i
) + E3(n)

where

E3(n) :=
∑

Q∈QDn
aQhQ≥18

ζQe(−τQ/hQ).

For i = 1, 2, 3, 4, we find via Table 1 the sixth roots of unity

ζQ1 = ζ2
6 , ζQ2 = ζ5

6 , ζQ3 = ζ3
6 , ζQ4 = 1

and, for i = 5, 6, 7, 8,

ζQ0
5

= ζ3
6 ζQ1

5
= ζ0

6

ζQ0
6

= ζ1
6 ζQ1

6
= ζ−1

6

ζQ0
7

= ζ3
6 ζQ1

7
= ζ0

6

ζQ0
8

= 1 ζQ1
8

= 1.

We then compute via (4.4)

4∑
i=1

ζQi
e(−τQi

/hQi
) = exp(π

√
|Dn| /6)

4∑
i=1

ζQi
ζ
bQi
12

where, since bQi
= 1 for i = 1, 2, 3, 4,

ζ12

4∑
i=1

ζQi
= ζ12(ζ3

6 + ζ1
6 + ζ3

6 + 1) = 0.
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Meanwhile, if n is even,

8∑
i=5

ζQ0
i
ζ
b
Q0
i

24 = ζ−1
24 ζ

3
6 + ζ24ζ6 + ζ−5

24 ζ
3
6 + ζ24 = i

√
6

and, if n is odd,

8∑
i=5

ζQ1
i
ζ
b
Q1
i

24 = ζ−1
24 + ζ−3

24 ζ
−1
6 + ζ−5

24 + ζ−11
24 = −i

√
6

so that

S(n) = (−1)ni
√

6 exp(π
√
|Dn|/12) + E1(n) + E2(n) + E3(n).

Thus, by (4.2),

α(n) = (−1)n+1

√
6√

24n− 1
el(n)/2 + Im(E1(n) + E2(n) + E3(n)).

We now bound each error term; since u ≥ 5, then uaQhQ ≥ 30 and via (4.4),

|E1(n)| ≤
∑
u>1
u2|Dn

∑
Q∈QDn/u2

exp(π
√
|Dn|/aQhQ)

≤ H(Dn) exp(π
√
|Dn|/30).

To bound E2(n), we proceed analogously to [9, pp. 14–15] to obtain, via Lemma 3.3,

|E2(n)| ≤ 4H(Dn) + CH(Dn)
∞∑
n=1

exp(4π
√
n− πn/2

√
3)

≤ C1H(Dn)

where

C1 := 4 + C[2.08× 1020 + 426] < 2.47× 1023.

Finally,

|E3(n)| ≤
∑

Q∈QDn
aQhQ≥18

exp(π
√
|Dn|/aQhQ)

≤ h(Dn) exp(π
√
|Dn|/18).

Let E(n) := Im(E1(n) + E2(n) + E3(n)); this total error then satisfies

|E(n)| ≤ |E1(n)|+ |E2(n)|+ |E3(n)|

≤ H(Dn)
[
C1 + exp(π

√
|Dn|/30)

]
+ h(Dn) exp(π

√
|Dn|/18)

< (2.48× 1023)H(Dn) exp(π
√
|Dn|/18).

By the class number bound from [9, pp. 17], then,

|E(n)| < (4.30× 1023)2q(n) |Dn|2 exp(π
√
|Dn|/18).
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5. Corollaries to Theorem 1.1

We make use of the effective bound on p(n) for all n ≥ 1 from [9, Lemma 4.2]:

(5.1) p(n) =
2
√

3

24n− 1

(
1− 1

l(n)

)
el(n) + Ep(n)

where |Ep(n)| ≤ (1313)el(n)/2.

Corollary 5.1. For r = 0, 1 and n ≥ 4,

N(r, 2;n) = M(n)el(n) + (−1)rR2(n),

where

M(n) :=

√
3

24n− 1

(
1− 1

l(n)

)
and

|R2(n)| ≤ (8.17× 1030)el(n)/2

Proof. Utilizing (5.1) grants, via Theorem 1.1,

N(0, 2;n) =
p(n) + α(n)

2

=

√
3

24n− 1

(
1− 1

l(n)

)
el(n) +R2(n)

and similarly

N(1, 2;n) =
p(n)− α(n)

2

=

√
3

24n− 1

(
1− 1

l(n)

)
el(n) −R2(n),

where

R2(n) := (−1)n−1

√
6

2
√

24n− 1
el(n)/2 +

1

2
(Ep(n) + E(n)).

We then have

|R2(n)| ≤

(
657 +

√
6

2
√

24n− 1

)
el(n)/2 + (2.15× 1023)2q(n) |Dn|2 el(n)/3

≤ (8.17× 1030)el(n)/2.

�

Corollary 5.2. For all n ≥ 4,

N(r, 2;n)

p(n)
=

1

2
+ (−1)rEr(n),

where

|Er(n)| ≤ (1.89× 1032)e−l(n)/3
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Proof. Note that
N(r, 2;n)

p(n)
=

1

2
+ (−1)r

α(n)

2p(n)
.

Let Er(n) := α(n)/2p(n). We utilize a crude lower bound for p(n) for n ≥ 4
√

3

96
el(n) ≤

√
3

12n

(
1− 1√

n

)
el(n) < p(n)

due to Ono and Bessenrodt [4], and compute

|Er(n)| ≤ 48√
3
e−l(n)

( √
6√

24n− 1
el(n)/2 + |E(n)|

)

≤ 48
√

2√
24n− 1

e−l(n)/2 + (1.20× 1025)2q(n) |Dn|2 e−2l(n)/3

≤ (1.89× 1032)e−l(n)/3.

�

6. Proof of Theorem 1.2

We first require the following lemma:

Lemma 6.1. For r = 0 (resp. r = 1), we have that

M(n)

(
1− 1√

n

)
el(n) < N(r, 2;n) < M(n)

(
1 +

1√
n

)
el(n)

for all n ≥ 8 (resp. 7).

Proof. From Corollary 5.1, we have that

M(n)el(n) − |R2(n)| < N(r, 2;n) < M(n)el(n) + |R2(n)|
with

|R2(n)| ≤ (8.17× 1030)el(n)/2.

We then calculate that, for all n ≥ 4543,

8.17× 1030 <
M(n)√

n
el(n)/2

and verify with a computer and the OEIS [16] the result for n < 4543. �

We now proceed with the full proof. Assume 11 ≤ a ≤ b and let b = Ca where C ≥ 1. By
Lemma 6.1 we have the inequalities

N(r, 2; a)N(r, 2;Ca) > M(a)M(Ca)

(
1− 1√

a

)(
1− 1√

Ca

)
el(a)+l(Ca)

and

N(r, 2; a+ Ca) < M(a+ Ca)

(
1 +

1√
a+ Ca

)
el(a+Ca).

Thus, we seek conditions on a > 1 such that

(6.1) eTa(C) >
M(a+ Ca)

M(a)M(Ca)
Sa(C),
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where

Ta(C) := l(a) + l(Ca)− l(a+ Ca) and Sa(C) :=

(
1 + 1√

a+Ca

)
(

1− 1√
a

)(
1− 1√

Ca

) .
Taking logarithms in turn grants an equivalent formulation

(6.2) Ta(C) > log

(
M(a+ Ca)

M(a)M(Ca)

)
+ logSa(C).

Furthermore, as functions of C, Ta is strictly increasing and Sa strictly decreasing, so that
it suffices to show that

Ta(1) > log

(
M(a+ Ca)

M(a)M(Ca)

)
+ logSa(1)

for all a ≥ 8, and, with M(a+ Ca)/M(Ca) ≤ 1 for all such a, we may show that

(6.3) Ta(1) > logSa(1)− logM(a).

Calculation of Ta(1) and Sa(1) shows that (6.3) holds for a ≥ 18.
To complete the proof, assume that 11 ≤ a ≤ 17. For each such integer a, we calculate

the real number Ca for which

Ta(Ca) = log Sa(Ca)− logM(a).

The values Ca are listed in the table below.

Table 3

a Ca max b

11 2.20. . . 24

12 1.86. . . 22

13 1.62. . . 21

14 1.43. . . 20

15 1.27. . . 19

16 1.15. . . 18

17 1.05. . . 17

By the discussion above, if b = Ca is an integer for which C > Ca holds, then (6.2) holds,
which in turn grants the theorem in these cases. Only finitely many cases remain, namely
the pairs integers where 11 ≤ a ≤ 17 and 1 ≤ b/a ≤ Ca. We compute N(r, 2; a), N(r, 2; b),
and N(r, 2; a+ b) directly in these cases to complete the proof.
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