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Abstract

A mathematical model is identifiable if some subset of its unknown parameters can be recovered
from data. Here, we focus on a particular class of model, linear compartment models, which are used to
represent the transfer of substances in a system. We examine the effects of the removal and addition of a
leak on model identifiability. We provide results on the structure of the coefficients of the input-output
equation of a model with a single leak. This result is used to prove that the addition of a leak to an
unidentifiable model results in an unidentifiable model and the removal of a leak from an identifiable
model results in an identifiable model. We also examine the singular locus equation, introduced by Gross,
Meshkat, and Shiu [2], and the effects of the removal of an edge that divides the singular locus equation
on model identifiability. Our conjecture is that the removal of such an edge results in an unidentifiable
model, in this paper we introduce classifications to explain this result and some interesting examples to
motivate future work.

1 Introduction

A model is identifiable if the unknown parameters in the model can be recovered from given input/output
data. In this paper, we focus on the problem of determining identifiability for a particular class of models,
called linear compartment models. Linear compartment models are used in a variety of fields, including in
biological applications, to represent the transfer of substances in a system. In the context of pharmacokinet-
ics, the understanding of such models might allow for more precision in the introduction and measurement
of drug transfers within the body.

Previous work has focused on characterizing the effects of model operations (adding or removing inputs,
outputs, leaks, or edges) on the identifiability of a model. Gross et al. [1] proved that adding inputs or
outputs and, under certain hypotheses, adding or removing a leak - preserves identifiability. In this paper,
we work to expand upon the effects of adding or removing a leak under more general hypotheses.

In addition, we examine the singular locus equation and the information it provides on the identifiability of
strongly connected submodels. More specifically, we examine the role of dividing edges in the singular locus
and the identifiability of the model resulting from their removal.

The outline of this paper is as follows. In Section 2, we introduce linear compartment models and identifi-
ability. We provide definitions and introduce notation. In Section 3, we prove our results on the effects of
adding and removing a leak. We conclude with a discussion of the results in Section 4.

2 Background

2.1 Linear Compartment Models

A linear compartment model (alternatively, linear compartment model) is a tuple (G, In,Out, Leak) where
G = (V,E) is a directed graph and In,Out, Leak ⊆ V . A compartment i ∈ V indicates a node of the linear
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compartment model, which can contain inputs, outputs, and leaks. Input compartments are associated to
an input stream, ui(t), which fuels the system. Similarly, output compartments have an associated output
measure, y(t). We assume Out 6= ∅ as linear compartment models with no outputs are not identifiable.

In keeping with the literature, output compartments are indicated using this symbol: . Input compartments
are labeled “in” and leaks are indicated using outgoing edges. For example, the linear compartment model
in Figure 1 has In = {1}, Out = {3} and Leak = {1, 2}.

Each edge j → i ∈ E represents the flow or transfer from compartment j to compartment i. We assign a
flow parameter kij to each edge, also called a rate constant. Leak compartments also have flow parameters,
k0`, which are the rates of flow exiting the system from compartment `.

Figure 1 depicts a three-compartment catenary model. From a biological standpoint, this model could
represent the injection and flow of a drug within the body. The input is the drug amount, and compartment
1 is the injection site. Compartments 2 and 3 represent other organs in the body where the drug to travels,
such as the heart and lungs, respectively. The parameters between compartments 1, 2, and 3 indicate the
transfer of the drug between organs, with the leak parameters, k01 and k02, representing the transfer of drugs
from the measurable system into immeasurable parts of the body, such as the bloodstream. The output is
where the final concentration of the drug is measured.

1 2 3

k21

k12

k32

k23

in

k01 k02

Figure 1: A linear compartment model

We now introduce some more definitions.

Definition 2.1. A directed graph is strongly connected if there exists a path from each vertex to every other
vertex. A linear compartment model (G, In,Out, Leak) is strongly connected if G is strongly connected.

Definition 2.2. The compartmental matrix of a linear compartment model (G, In,Out, Leak) with n com-
partments is the n× n matrix A given by the following:

Aij :=


−k0i −

∑
p:i→p∈E kpi if i = j and i ∈ Leak

−
∑

p:i→p∈E kpi if i = j and i /∈ Leak

kij if j → i is an edge of G

0 otherwise

A linear compartment model (G, In,Out, Leak) defines a system of linear ODEs, with inputs ui(t) and
outputs yi(t), where x(t) = (x1(t), x2(t), . . . , xn(t)) is the vector of concentrations in the compartments at
time t:

x′(t) = Ax(t) + u(t),

yi(t) = xi(t) for i ∈ Out

where ui(t) ≡ 0 for i /∈ In.

Example 2.1. For the model in Figure 1, the ODEs are given byx′1
x′2
x′3

 =

−k01 − k21 k12 0
k21 −k02 − k12 − k32 k23
0 k32 −k23

 x1

x2

x3

 +

u1

0
0


with output equation y3 = x1.
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2.2 Input-Output Equations

The input-output equations of a linear compartment model are equations that hold along all solutions of the
ODEs, and involve only the parameters kij , input variables ui, output variables yi, and their derivatives.
The general form of these equations was defined by Meshkat, Sullivant, and Eisenberg [3]. A version of their
result stated here is for the case of an input in compartment i and output in compartment j.

Proposition 2.1 (Meshkat, Sullivant, and Eisenberg [3]). Consider a linear compartment model that is
strongly connected, has an input in compartment i and an output in compartment j (and no other inputs or
outputs) and has at least one leak. Let A denote the compartmental matrix, let ∂ be the differential operator
d/dt, and let (∂I − A)ij be the submatrix of (∂I − A) obtained by removing row i and column j. Then the
input-output equation is as follows:

det(∂I −A)yj = det((∂I −A)ij)ui (1)

Definition 2.3. From the input-output equations (1), we can derive a coefficient map from R|E|+|Leak| →
Rm, which sends the vector of parameters (kij) to the vector of coefficients of the input-output equations.
Here, m denotes the number of coefficients.

1 2 3

4

in

k12 k23

k24
k41 k43

Figure 2: A linear compartment model with In = {1}, Out = {2}

Example 2.2. For the model in Figure 2, the compartmental matrix is:

A =


−k41 k12 0 0

0 −k12 − k32 0 k24
0 k32 −k43 0
k41 0 k43 −k24


Therefore the input-output equation is:

det(∂I −A)y2 = det((∂I −A)12)u1

det




d
dt + k41 k12 0 0

0 d
dt + k12 + k32 0 k24

0 k32
d
dt + k43 0

k41 0 k43
d
dt + k24


 y2 = det

 0 0 −k24
0 d

dt + k43 0
−k41 −k43 d

dt + k24

u1

which simplifies to the following:

y
(4)
2 +y

(3)
2 (k12+k24+k32+k41+k43)+y

(2)
2 (k12k24+k12k41+k12k43+k24k32+k24k41+k32k41+k32k43+ k41k43)+

y
(1)
2 (k12k24k43 + k12k41k43 + k24k32k41 + k24k41k43 + k32k41k43) = u

(1)
1 (−k24k41)− k24k41k43

Below is the coefficient map derived from the input-output equation:

The coefficient map c : R5 → R5 is given by:

(k12, k24, k41, k23, k43) 7−→ (k12 + k24 + k32 + k41 + k43, k12k24 + k12k41 + k12k43 + k24k32 + k24k41 + k32k41 +
k32k43 + k41k43, k12k24k43 + k12k41k43 + k24k32k41 + k24k41k43 + k32k41k43, −k24k41, k24k41k43)
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2.3 Identifiability

A linear compartment model is structurally identifiable if all kij parameters can be recovered from the data.
More broadly, given a certain linear compartment model, representing some physical system, can we recover
all of the flow parameters between compartments.

There are different kinds of identifiability, but in this paper we focus on generic local identifiability. The
following definition defines the concept more precisely.

Definition 2.4. LetM = (G, In,Out, Leak) be a linear compartment model that is strongly connected with
at least one input. Let c : R|E|+|Leak| → Rm be the coefficient map derived from the input-output equations.
Then, M is:

1. globally identifiable if c is one-to-one, and is generically globally identifiable is c is one-to-one outside a
set of measure zero.

2. locally identifiable if around every point in R|E|+|Leak| there is an open neighborhood U such that
c : U → Rk is one-to-one, and is generically locally identifiable if, outside a set of measure zero, every
point in R|E|+|Leak| has such an open neighborhood in U .

3. unidentifiable if c is infinite-to-one.

Now, we state a prior result of Meshkat, Sullivant, and Eisenberg [3] which is a criterion for identifiability.

Proposition 2.2 (Meshkat, Sullivant, and Eisenberg [3]). A linear compartment model (G, In,Out, Leak),
with G = (V,E), is generically locally identifiable if and only if the rank of the Jacobian matrix of its coefficient
map c, when evaluated at a generic point, is equal to |E|+ |Leak|.

Now that we have established a basic understanding of identifiability and its relation to linear compartment
models, we introduce some prior results on the effects of removing/adding leaks on the identifiability of a
model.

Proposition 2.3 (Theorem 4.3 [1]). Let M be a linear compartment model that is strongly connected and has
at least one input and no leaks. Let M’ be a model obtained from M by adding one leak. If M is generically
locally identifiable from the coefficient map, then so is M’.

Proposition 2.4 (Proposition 4.6 [1]). Let M be a linear compartment model that is strongly connected and
has an input, output, and leak in a single compartment (and has no other inputs, outputs, or leaks). If M
is generically locally identifiable from the coefficient map, then so is the model obtained from M by removing
the leak.

2.4 Singular Locus

Definition 2.5. LetM = (G, In,Out, Leak) be a generically locally identifiable linear compartment model.
Let c be the coefficient map derived from the input-output equation. The singular locus is the subset of the
parameter space R|E|+|Leak| where the Jacobian matrix of c has rank strictly less than |E|+ |Leak|.

Therefore, for identifiable linear compartment models, the singular locus is defined by the set of all (|E| +
|Leak|) × (|E| + |Leak|) minors of the Jacobian matrix of the coefficient map. In certain cases, the model
results in a square Jacobian matrix where there is then only a single minor.

A model’s singular locus is of interest because it provides information regarding the identifiability of particular
parameter values. Previously Gross, Meshkat, and Shiu [2] have investigated models with a single singular
locus equation and the edges that divide the singular locus, which we call dividing edges and showed that
removing edges that are not dividing edges from an identifiable model maintains identifiability.

Proposition 2.5 (Theorem 3.1 [2]). Let M = (G, In,Out, Leak) be a linear compartment model that is

strongly connected and generically locally identifiable, with singular locus equation f . Let M̃ be the model
obtained from M by deleting a set of edges I of G. If M̃ is strongly connected, and f is not in the ideal
〈aji | (i, j) ∈ I〉, then M̃ is generically locally identifiable.

4



Their work motivated the following question that we address in this paper.

Question 2.1 ([2]). If a parameter kij divides the singular locus equation, does it follow that the model M′
obtained by deleting the edge kij is unidentifiable?

In addressing this question, we make use of the following conjecture on the number of coefficients of a linear
compartment model with n compartments.

Conjecture 2.1. Consider a strongly connected linear compartment model M = (G, In,Out, Leak) with
|In| = |Out| = 1. Let n be the number of compartments, and let L be the length of the shortest (directed)
path in G from the input compartment to the output compartment. Then, in the input-output equation 1, the
number of non-monic, nonzero coefficients on the left- and right-hand sides are as follows:

# coefficients on LHS =

{
n if Leak 6= ∅
n-1 if Leak = ∅

# coefficients on RHS =

{
n-1 if In = Out

n-L if In 6= Out

All models we have observed thus far have been consistent with Conjecture 2.1. The paper (in preparation)
“Identifiability of linear compartment models: The effect of moving inputs and outputs” by Cashous Bortner,
Elizabeth Gross, Nicolette Meshkeat, Anne Shiu and Seth Sullivant will resolve at least some cases of the
conjecture.

3 Main Results

In this section, we will outline our results on the effects of identifiability when adding or removing a leak.
More specifically, we address the following questions: If a model is unidentifiable with no leaks and a single
leak is added, is the resulting model unidentifiable? If a model containing a single leak is identifiable and the
leak is removed, is the resulting model identifiable? In addition, we address the question of removing edges
that divide the singular locus and the effect on the identifiability of the model (Question 2.1).

3.1 Preliminary Results

First we introduce some preliminary results regarding the structure of the coefficients of the input-output
equation which will be used in the proofs of our main results.

Lemma 3.1. Let M be a strongly connected linear compartment model with |In| = |Out| = 1. Denote the

coefficients of the input-output equation by ci. Each coefficient of the model M̃ obtained by adding a single
leak at compartment ` has the form: c̃i = ci + k0`(gi), where k0` is the leak parameter and gi is a polynomial
in the parameters kij’s where i ≥ 1.

Proof. The left-hand coefficients (cyi) of the input-output equations of the modelsM and M̃ are the result of

the expansion of det(∂I−A) and det(∂I−Ã), respectively. It is clear from the structure of the compartmental

matrix A that A = Ã
∣∣∣
k0`=0

. In addition, det(∂I = Ã)
∣∣∣
k0`=0

= det(∂I − Ã
∣∣∣
k0`=0

). It is straightforward to

verify: det(∂I − Ã)
∣∣∣
k0`=0

= det(∂I − A). So, comparing coefficients of y
(p)
3 in the resulting determinants,

we note the following relationship: c̃yi |k0`=0 = cyi , for all i and therefore, c̃i = ci + k0`(gi) where gi is a
polynomial in the parameters kij ’s where i ≥ 1.

The right-hand coefficients (cui) of the input-output equations of the modelsM and M̃ are the result of the
expansion of det((∂I −A)in/out) and det((∂I −A)in/out), respectively. The proof follows that above to show
c̃ui

= cui
+ k0`(x), where x is some polynomial combination of kij with i ≥ 1.

Lemma 3.2. Let M be a strongly connected linear compartment model with |In| = |Out| = 1, Leak = ∅ and

r coefficients in the input-output equation. The model M̃ obtained by adding a single leak k0` has exactly
r + 1 coefficients.
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Proof. It is clear, by Lemma 3.1, that there are at least as many coefficients in the model M̃ as in M. We
show that there is exactly one additional coefficient by showing that the number of y-coefficients (cyi

) on
the left-hand side of the input-output equation increases by 1 and the number of u-coefficients (cui) on the
right-hand side of the input-output equation does not change.

First, we note that the powers of d
dt in the expansion of det(∂I −A) and det((∂I −A)in/out) are not affected

by the addition of a leak. Any new d
dt terms created by the addition of the leak will include the leak term and

will therefore not cancel out any terms that existed in the model with no leak. Therefore, the only coefficient
that is affected by the leak is the constant coefficient which corresponds to det(A).

The structure of A ensures that given a strongly connected model with no leaks the sum of the entries of
each column is 0. Therefore, the rows are linearly dependent and thus, det(A) = 0. So M does contain the

constant term y-coefficient. However, in the model M̃ the rows of the matrix Ã are linearly independent.
We prove this by supposing there is a linear combination of rows b1 · ~a1 + b2 · ~a2 + · · · + bn · ~an = ~0, where
bi ∈ R and ~ai is the vector of the entries of the ith row of Ã and showing the only solution is the trivial one.

We know ~a` contains k0` and no other vector does, therefore b` = 0. Because the model is strongly connected,
there exists some edge k`j . Each edge kij where i ≥ 1 appears in Ã two times. Therefore, with b` = 0, there
is now only one instance of k`j which appears in ~aj . So, bj = 0. We continue by induction to show that

bi = 0 for all 1 ≤ i ≤ n. Thus, the only solution is the trivial one and the rows of Ã are linearly independent.
Therefore, det(Ã) 6= 0. This means that the constant y-coefficient exists in the model M̃ and the number of
y-coefficients has increased by 1.

Now we show that the constant u-coefficient existed inM and therefore the number of u-coefficients does not
change following the addition of the leak. The u-coefficients appear in the expansion of det((∂I −A)in/out).
Again we consider the linear combination of rows such that the sum is 0 and show that the only solution is
the trivial one. Suppose, b1 ·~a1 + b2 ·~a2 + · · ·+ bn−1 ·~an−1 = ~0 where bi ∈ R and ~ai contains the entries of the
ith row of Ain/out. We follow the same process as with the y-coefficients. Instead of starting with the leak,
we consider the edge kj in. The removal of the row in means that this edge appears only once in Ain/out in
row j. So, bj = 0. Since the model is strongly connected, there is an edge ksj . When bj = 0, there is only
one occurrence of the edge ksj which appears in ~as, thus bs = 0. We continue by induction to conclude that

bi = 0 for all 1 ≤ i ≤ n − 1. So the rows are linearly independent and det(Ã) 6= 0. Therefore the model

M contains the constant coefficient. This constant coefficient remains in the model M̃, as any new constant
terms will contain the leak edge and will not cancel with terms from the model with no leak. Therefore the
number of u-coefficients is unchanged.

So, we have showed that, following the addition of a single leak, the number of y-coefficients increases by 1
and the number of u-coefficients is unchanged. Therefore the total number of coefficients increases by 1 to
r + 1.

To conclude the proof, we state explicitly what is implied - that the addition leaks beyond the first leak does
not change the number of coefficients in the model. As stated previously, a leak affects only the constant
term coefficient in the expansion of the determinant. It is clear that there can be at most one constant term
coefficient. Furthermore, the addition of a leak will not cancel out the constant term coefficient since, as
stated previously, additional terms that appear in the model with the leak will contain the leak term and will
therefore not cancel any terms that existed in the model without that leak. So, for a model with no leaks
and r coefficients, the addition of any number of leaks results in a model with exactly r+ 1coefficients.

In addition to the previous results, our observations of several classes of models lead us to believe the following
conjecture is true regarding the edges that divide the singular locus equation.

Conjecture 3.1. Let M be a strongly connected linear compartment model such that |In| = |Out| = 1 and
Leak 6= ∅. Then, k0` - det(JM) for all ` ∈ Leak.
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3.2 Adding a Leak

In this section we address the following question:

Question 3.1 (Question 5.2 [1]). LetM be an unidentifiable linear compartment model, if one leak is added,

is the resulting model M̃ always unidentifiable?

We address this question by considering the two subcases that arise naturally through Proposition 2.2 and
classify an unidentifiable model by the way in which the Jacobian matrix of the coefficient map is not full
rank. In the first subcase, a model is unidentifiable because the Jacobian matrix has a determinant of 0.
In the second subcase, a model is unidentifiable because the Jacobian matrix has more columns than rows
(model has more parameters in the model than coefficients of the input-output equation). The following
Theorem 3.1 addresses the second subcase and Conjecture 3.2 concerns the first.

Theorem 3.1. Let M be a linear compartment model with |In| = |Out| = 1. Consider the model M̃ formed
by adding a single leak to M. If M is has more parameters in the model than coefficients in the input-output
equation, then M̃ also has more parameters in the model than coefficients in the input-output equation.

We give two proofs, one using the Conjecture 2.1 and the other using Lemma 3.2.

Proof using Conjecture 2.1:

Proof. Consider a strongly connected linear compartment model M with n compartments. Let K be the
number of parameters of M and C be the total number of coefficients of the input-output equation and
assume that K − C > 0.

We start with the case where Leak = ∅ in M. Then, by Conjecture 2.1, the number of y-coefficients on the
left-hand side of the input-output equation is n− 1. Let x be the number of u-coefficients on the right-hand
side of the equation. Thus, C = n− 1 + x so K − n + 1− x > 0.

Now consider the model M̃ obtained by adding a single leak. We show that K̃− C̃ > 0. With the additional
leak, the number of parameters is K̃ = K + 1. By Conjecture 2.1, the number of y-coefficients is n. The
number of u-coefficients remains x. Thus, C̃ = n + x. Therefore, K̃ − C̃ = K + 1− n− x > 0. Thus, there
are more parameters than coefficients in the model M̃ and, by Proposition 2.2, M̃ is unidentifiable.

For the case where Leak 6= ∅ inM, by Conjecture 2.1, the number of y-coefficients is n. Let x be the number
of u-coefficients. Then, C = n + x so K − n− x > 0.

Consider the model M̃ obtained by adding a single leak. The addition of this leak increases the number
of paramters to K̃ = K + 1. The number of y-coefficients and number of u-coefficients do not change, so
C̃ = n + x. So, K̃ − C̃ = K + 1− n− x > 0. Therefore, by Proposition 2.2, M̃ is unidentifiable.

Proof using the Lemma 3.2:

Proof. LetM be a strongly connected linear compartment model with |In| = |Out| = 1. Assume the number
of parameters in the model K is greater than the number of coefficients in the input-output equation C. So
K − C > 0. We consider two cases : the case when Leak = ∅ and the case when Leak 6= ∅. Let M̃ be the
model obtained by adding a single leak.

Suppose Leak = ∅ in M. The addition of a single leak increases the number of parameters to K̃ = K + 1.
By Lemma 3.2, following the addition of a single leak, the number of u-coefficients on the right-hand side
of the input-output equation does not change and the number of y-coefficients on the left-hand side of
the equation increases by exactly 1. So the total number of coefficients increases to C̃ = C + 1. Then,
K̃ − C̃ = (K + 1)− (C + 1) = K − C > 0. Therefore K̃ > C̃ and by Proposition 2.2 M̃ is unidentifiable.

Suppose Leak 6= ∅ in M. The addition of a single leak increases the number of parameters to K̃ = K + 1.
By Lemma 3.2, the total number of coefficients does not change. So C̃ = C.

Therefore, K̃ − C̃ = K + 1− C > 0. Therefore K̃ > C̃, and by Proposition 2.2, M̃ is unidentifiable.

In addition to this result, our observations have led us to the following conjecture concerning the subcase of
Question 3.1 where the determinant of the Jacobian matrix is 0.
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Conjecture 3.2. Let M be a linear compartment model with |In| = |Out| = 1 and Leak = ∅. Consider the

model M̃ formed by adding some number of leaks to M. If the determinant of the Jacobian matrix of the
coefficient map of M is 0, or, in the case of a non-square Jacobian matrix, all minors of the Jacobian are 0,
then the model M̃ is also unidentifiable.

We end this section with a discussion of the addition of leaks to models that are identifiable. The following
result follows directly from Lemma 3.2.

Theorem 3.2. Let M be an identifiable strongly connected linear compartment model with K parameters
and C coefficients such that C −K ≥ 0 and Leak = ∅. If n > C −K + 1 leaks are added, the resulting model
is unidentifiable.

Proof. The proof follows easily from Lemma 3.2. By Lemma 3.2, the addition of any number of leaks increases
the number of coefficients in the input-output equation by exactly 1. The number of parameters increase by
1 for each additional leak. So, suppose C−K+2 leaks are added to a model. Then the number of coefficients
increases to C ′ = C+1 and the number of parameters increases to K ′ = K+(C−K+2) = C+2. Therefore,
there are more parameters than coefficients and, by Proposition 3.2, the model is unidentifiable.

Remark 3.1. In the case that less than n ≤ C −K + 1 leaks are added to the model. The model may or may
not be identifiable. If the model is not identifiable, it has a Jacobian matrix with a determinant of zero. A
fuller understanding of the cases when the determinant of the Jacobian is zero might clarify this question.

3.3 Removing a Leak

In this section we address the following conjecture, originally posed by Gross, Harrington, Meshkat and Shiu
[1, Conjecture 4.5].

Conjecture 3.3 (Removing a leak). Let M̃ be a linear compartment model that is strongly connected and

has at least one input and exactly one leak. If M̃ is generically locally identifiable, then so is the model M
obtained from M̃ be removing the leak.

Previously Gross et al. [1] proved the conjecture holds for the case where In = Out = Leak. (Proposition
2.4). We have expanded upon this result to prove the conjecture whenever Conjecture 3.1 holds.

Theorem 3.3. Conjecture 3.3 is equivalent to Conjecture 3.1.

Proof. Lemmas 3.1,3.2, and 3.3, provide us with a very specific structure of the coefficients ci and c̃i of
the models M and M̃, respectively. Using this structure, we can compare the structure of the Jacobian
matrices of the coefficient map for each model to show that det(JM̃) 6= 0 ⇒ det(JM) 6= 0 and therefore M
is identifiable.

It is clear, M̃ has one additional parameter, k0`. By Lemma 3.3, if M̃ has r y-coefficients on the left-hand
side of the input-output equation, thenM has (r−1) y-coefficients. By Lemma 3.1, the additional coefficient
has the form: c̃yr = k0`(g`) where g` is some polynomial combination of edges kij with i ≥ 1. Thus, the row

of JM̃ corresponding to c̃yr
has entries of

∂cyr
∂kij

= 0 if kij is not in g`, and entries of k0`(gi), where gi is some

polynomial combination of edges, if kij is in g`. The entry
∂cyr
∂k0`

= g` 6= 0.

Consider the submatrix, B, consisting of the rows, ˜cy1
, . . . , ˜cyr−1

, c̃u1
, . . . , c̃um

and all columns except the

column corresponding to k0`. By Lemma 3.1, the entries of this matrix have the form:
∂c̃p
∂kij

=
∂cp
∂kij

+k0`(bp,i,j)

where bp,i,j is a polynomial in the parameters. Thus, B|k0`=0 = JM.

Now, consider the matrix, JM̃
∣∣
k0`=0

. Take the determinant by expanding along the row corresponding to

cyr
, which now has all entries 0 except the entry g`. The calculation is as follows:

det(JM̃)
∣∣
k0`=0

= 0 + 0 + · · ·+ 0± g` · (det(B|k0`=0))

= ±a · (det(JM))
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If Conjecture 3.1 holds for M̃, then k0` does not divide JM̃ and therefore det(JM̃)
∣∣
k0`=0

6= 0. Then, since

g` 6= 0, we can conclude that det(JM) 6= 0 and therefore, M is identifiable. So we can conclude that
Conjecture 3.3 is true if and only if Conjecture 3.1 is true.

Below is a diagram illustrating the structure of JM̃ and JM described above.

JM̃ = xeither 0 or k0`(· · · )

∂cyi
∂kij

+ k0`(b)

∂cui

∂kij
+ k0`(b)

c̃y1

...

c̃yr−1

c̃yr

c̃u1

...

c̃um

B

k0`

JM =

cy1

...

cyr−1

cu1

...

cum

∂cyi
∂kij

∂cui

∂kij

Remark 3.2. The proof above handles the case of a model with a square Jacobian matrix of the coefficient
map. If an identifiable model has more coefficients in the input-output equation than parameters in the model,
then the Jacobian matrix is non-square. The model being identifiable means that at least one minor of the
Jacobian matrix is non-zero. If such a minor corresponds to a submatrix that contains the row corresponding
to the y-coefficient with the form k0`(g`), where k0` is the leak and g` is a polynomial in the parameters
kij , then the proof above applies. However, if the model is such that the non-zero minors are associated to
submatrices that do not contain the row corresponding to the y-coefficient k0`(g`), then the proof above does
not apply. We have not observed such a case ever occurring, however a full proof to address scenario this has
not yet been attempted.

Remark 3.3. Theorem 3.2 describes the the equivalence of Conjecture 3.1 and Conjecture 3.3. Proposition
2.4 [2] resolves Conjecture 3.3 for models where |In| = |Out| = |Leak| = 1 and Leak ∈ In ∪Out. Therefore,
Conjecture 3.1 holds for this class of models.

3.4 The Singular Locus and Dividing Edges

In this section we address Question 2.1 and limit our discussion to models with a square Jacobian matrix
and therefore a single singular locus equation. Our observations led us to the following conjecture.

Conjecture 3.4. Let M be a strongly connected, generically locally identifiable linear compartment model.
If parameter kij divides the singular locus equation of model M, then the model M′ obtained by deleting the
edge kij is unidentifiable.

Furthermore, we have observed that many dividing edges of the singular locus equation belong to one or
more of the following classifications based on the effects of their removal:

1. Removal of the dividing edge breaks the strong connectedness of the model.

2. Removal of the dividing edge increases the length of the shortest path from input to output.

3. Removal of the dividing edge creates “pseudo-leaks” or “pseudo-inputs.”
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3.4.1 Classification 1: Breaking Strong Connectedness

It is our observation that in many cases the dividing edges of a model are such that the removal of that edge
would break the strong connected characteristic of the model. The effect of breaking the strong connectedness
of the model is unsurprising as we conjecture that the model obtained by removing a dividing edge is uniden-
tifiable. The lack of the strong connected characteristic means that information is not flowing completely
through the model from input to output resulting in a situation that would lend itself to an unidentifiable
result.

Remark 3.4. It is important to note that many of the methods and known results pertaining to identifiability
rely on the strong connected nature of a linear compartment model. Therefore, when examining models
that are no longer strongly connected when a dividing edge has been removed, we must keep in mind that
the method we have outlined in the Background that uses the input-output equation may not be accurate.
(Remark 3.11 in [1] one of the potential issues that may arise)

2

1

3

4 5

k21

k12

k32

k53

k45

k24

k31

k13

in

Figure 3: Model with In = Out = 1 and dividing edges k24, k45, k53

Figure 3 depicts a strongly connected linearly compartment model with dividing edges k24, k45, and k53.
The removal of any one of these edges results in an unidentifiable linear compartment model. The removal
also results in a model that is not strongly connected. All other edges in the model do not break strong
connectedness in the model when removed and do not appear as dividing edges in the singular locus equation.

It is important to note that while in many instances each dividing edge is such that removing it results in
the model no longer being strongly connected, this is not always the case.

1 2 3

4

k21

k12

k32

k43
k24

k41

in

Figure 4: Model with In = {1}, Out = {4} and dividing edges k41

Figure 4 depicts a linear compartment model where k41 is the only dividing edge. The model obtained by
removing k41 is unidentifiable. In addition, removing k41 does not break the strong connectedness of the
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model. It does, however, affect the length of the shortest path from input to output which brings us to our
second classification.

3.4.2 Classification 2: Affecting Length of Path from Input to Output

We have observed that, at times, the dividing edge of the singular locus equation is an edge in the shortest
path from the input compartment to the output compartment and its removal increases the length of the
shortest path from input to output.

Dividing edges that fall into this classification may also be a part of Classification 1 in that their removal
results in a model that is not strongly connected. Some, however, do not fall into Classification 1, meaning
that their removal does not break the strongly connected nature of the resulting model. In this latter case,
we can apply Conjecture 2.1 to resolve Conjecture 3.4 for this subcase.

Theorem 3.4 (Subcase of Conjecture 3.4). Let M be a linear compartment model with |In| = |Out|,
Leak = ∅, and a square Jacobian matrix of the coefficient map, for which Conjecture 2.1 holds. If there
exists a dividing edge kij in M such that the model M′ obtained by removing kij is strongly connected and
the length of the shortest path from input to output has increased by at least 2, then M′ is unidentifiable.

Proof. Let L be the length of the shortest path from input to output in M. Let K be the number of
parameters in M and C be the number of coefficients of the input-output equation. The Jacobian matrix is
square, so K = C. Furthermore, if the removal the edge kij increases the length of the path from input to
output, then In 6= Out. Thus, by Conjecture 2.1, the number of coefficients is C = n−1+n−L = 2n−L−1.
(Here we assume the model has no leaks, the case for a model with leaks follows a similar proof). When the
dividing edge is removed and the length of the path from input to output increases to L′ ≥ L+ 2. Thus, the
number of coefficients decreases to C ′ = n − 1 + n − L′, which is at most, C ′ = 2n − L − 3. The number
of parameters decreases to K ′ = K − 1 = 2n − L − 2. Thus, the Jacobian matrix of the model M′ has
dimensions (2n− L− 3)× (2n− L− 2). Therefore, by Proposition 2.2 M′ is not identifiable.

Theorem 3.3 is demonstrated in the model depicted in Figure 4. In the original model, the shortest path
from input to output has length 1 (the edge k41). The model is identifiable with 6 parameters and 2n− 2 =
2(4) − 2 = 6 coefficients, resulting in a 6 × 6 Jacobian matrix of the coefficient map. When k41 is removed,
the resulting model is again strongly connected, however the length of the shortest path from input to output
has increased to 3 (the edges k21, k32, k43). There are now 5 parameters and 2n−4 = 2(4)−4 = 4 coefficients
resulting in a 4× 5 Jacobian matrix. By Proposition 2.2, this model is unidentifiable.

A second example of this subcase of Conjecture 3.4 is shown below.

2 3 4

5

1

k21

k23

k32 k43

k34

k14

k45k52

in

Figure 5: Model with In = {3}, Out = {4} and dividing edge k43

Figure 5 depicts an identifiable, strongly connected linear compartment model with dividing edge k43. The
model has 8 parameters and the shortest path from input to output has length 1 (the edge k43) so the
number of coefficients is 2n − 2 = 2(5) − 2 = 8. This results in an 8 × 8 Jacobian matrix. When the edge
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k43 is removed, the length of the shortest path from input to output increases to 3 (edges k23, k52, k45). The
resulting model has 7 parameters and 2n− 4 = 2(5)− 4 = 6 coefficients, resulting in a 6× 7 Jacobian matrix.
By Proposition 2.2, the model is unidentifiable.

3.4.3 Classification 3: Creation of Pseudo-leaks and Pseudo-inputs

A final interesting classification that our observations have led us to develop is the dividing edge that when re-
moved creates what we call “pseudo-leaks” and “pseudo-inputs”. All models that belong to this classification
must also belong to Classification 1

Definition 3.1. A pseudo-leak is an edge from one compartment to a compartment that has no outgoing
edges. A pseudo-input an edge to a compartment from a compartment that has no incoming edges.

The goal of defining this vocabulary is to emphasize the way in which we suspect the behavior of pseudo-
inputs and pseudo-leaks mimics the behavior of traditional inputs and leaks. For the case of a pseudo-input,
the concept is not fully understood in the context of a physical application, as it is unclear what - if anything
- leaves the compartment through the pseudo-input when no substance is flowing into the compartment.

However, for the case of a pseudo-leak the physical application supports the conjecture that these pseudo-leaks
behave in the same manner as a traditional leak. Furthermore, we have observed models with pseudo-leaks
and compared them to the corresponding model with the traditional leak and our observations indicate that
these types of edges do in fact behave in the same manner. This means that results on the effect of leaks on
a strongly connected model could be applied to cases of models with pseudo-leaks.

1 2 3

4

k21

k12

k32

k43
k24

k41

in

Figure 6: Model with In = {1}, Out = {2} and
dividing edge k24

1 2 3
k21

k12

k32

k03k01

in

Figure 7: Model with In = {1}, Out = {2}

Figure 6 depicts a strongly connected linear compartment model with dividing edge k24. The removal of k24
creates two pseudo-leaks, k41 and k43. We compare the coefficients of the model in Figure 6 to the coefficients
of the model depicted in Figure 7 where we have removed compartment 4 and replaced the pseudo-leaks by
traditional leaks k01 and k03. The coefficients of the input-output equation of each model are as follows:

cy1 = k12 + k21 + k32 + k41 + k43
cy2 = k12k41+k21k32+k12k43+k32k41+k41k43+k21k43
cy3

= k12k41k43 + k21k43k32 + k32k41k43

cu1 = −k21
cu2 = −k21k43

cy1 = k12 + k21 + k32 + k01 + k03
cy2

= k12k01+k21k32+k12k03+k32k01+k01k03+k21k03
cy3

= k12k01k03 + k21k03k32 + k32k01k03

cu1 = −k21
cu2 = −k21k03

The direct replacement of k41 and k43 by k01 and k03 in the coefficients of the input-output equation indicates
that the pseudo-leaks and leaks behave the same way in the analysis of the model.

Remark 3.5. The implication of pseudo-leaks behaving as traditional leaks is that one can apply previous
results on the behavior of leaks in a model to the model created by the removal of dividing edges. However,
it is important to note that this relies on the assumption that the all compartments, except the compartment
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to which the pseudo-leaks are directed, induce a graph that is strongly connected. We have not yet observed
an interesting case in which this is true. Therefore, previous results on the effects of leaks may not apply due
to the lack of strong connectedness.

3.4.4 Interesting Examples

We now finish our discussion of the dividing edges of the singular locus with some particularly interesting
examples of models that we have observed in our research.

Example 1:

The first example is a model with a dividing edge that does not fall into any of the Classifications described
above.

5
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Figure 8: Model with In = Out = {1}
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Figure 9: Model with In = Out = {1}

Figure 8 depicts a strongly connected, linear compartment model with In = Out = {1} and dividing edges
k54, k43, and k41. The edge k41 is an interesting case of a dividing edge in that the removal of k41 results in
a model that is still strongly connected (so no pseudo-leaks or pseudo-inputs were created) and the length of
the shortest path from input to output has not increased. The model obtained by removing k41 has an 8× 7
Jacobian matrix for which all minors are 0. Thus, the model obtained by removing k41 is unidentifiable, as
expected by Conjecture 3.4, however this is not explained by any of the classifications previously described.

Also interesting is the model depicted in Figure 9 where the edge k41 (in Figure 8) is replaced by the edge
k31. What is interesting is that while it appears that k31 would act in a similar manner to k41, in fact the
model in Figure 9 is unidentifiable.

13



Example 2:

The next interesting examples we consider involved edges that appear as dividing edges following small
changes to the model structure.

1 2 4

3

in

k21

k12 k42

k23
k31

k34

Figure 10: Model 1 with In = {2} and Out = {4}

1 2 4

3
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k12 k42

k23
k31

k34

Figure 11: Model 2 with In = {2} and Out = {4}

Figure 10 displays a strongly connected linear compartment model, Model 1, that is identifiable with a 6× 6
Jacobian matrix. The dividing edges are k12 and k42. Figure 11 displays the not strongly connected linear
compartment model, Model 2, obtained by removing the edge k21 from the model in Figure 10. This model
is also identifiable with a 6× 5 Jacobian matrix for which the dividing edge k42 divides all minors. We want
to draw attention to the fact that when k21 is removed the edge k12 does not appear as a dividing edge in
the singular locus of Model 2.

Next we consider removing the dividing edges from Model 1. When the edge k12 is removed from Model 1,
the resulting model is unidentifiable with a 6× 5 Jacobian matrix for which all minors are 0. When the edge
k42 is removed from Model 1, the resulting model is unidentifiable with a 3× 5 Jacobian matrix.

1 2 4

3

in

k21

k12 k42

k23
k31

k34

Figure 12: Model 3 with In = {2} and Out = {1}
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k12 k42

k23
k31

k34

Figure 13: Model 4 with In = {2} and Out = {1}

Figure 12 displays a strongly connected, linear compartment model, Model 3, that is identifiable with a 6×6
Jacobian matrix. The dividing edges are k12 and k23. Figure 13 displays a model, Model 4, that is not
strongly connected. This model is identifiable with a 6× 5 Jacobian matrix for which the dividing edge k12
which divides all minors. Again, we want to draw attention to the fact that the removal of k21 results in a
model in which k23 no longer appears as a dividing edge in the singular locus.

When dividing edge k12 is removed from Model 3, the resulting model is unidentifiable with 3× 5 Jacobian
matrix. When dividing edge k23 is removed from Model 3, the resulting model is unidentifiable with a 5× 5
Jacobian matrix that has a determinant of 0.

It is our observation that there are similarities between the dividing edge of Model 1 that stopped dividing
the singular locus of Model 2, and the dividing edge in Model 3 that stopped dividing in Model 4. In both
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cases, when this edge was removed from Model 1 and Model 3 to obtain the resulting models were unidenti-
fiable, with a square or tall rectangular Jacobian matrix. That is, for a given number of coefficients, C, and
number of parameters, K, the dividing edges from Model 1 and Model 3 which stopped dividing Model 2 and
Model 4, respectively, when removed resulted in models with K ≤ C. In contrast, the dividing edges which
remained from Model 1 to Model 2 and Model 3 to Model 4 when removed resulted in models C ≤ K.

Example 3:

We conclude our discussion of the singular locus with a comment on the case where a model has a non-square
Jacobian and therefore the singular locus is defined by the set of all maximal minors of the Jacobian matrix.
In this case we specify that a dividing edge is such that it divides every such minor. Conjecture 3.4 states
that the removal of such an edge results in an unidentifiable model. However, it is interesting to consider
the case where an edge divides one or multiple minors of the Jacobian but not all. The following example
depicts such a case.

3

2

1 4

k21

k32
k41

k14

k13

in

Figure 14: Model with In = Out{1}

The strongly connected model in Figure 14 has 5 parameters and 6 coefficients resulting in a 6× 5 Jacobian
matrix of the coefficient map. Therefore, the singular locus consists of the 6 minors of the Jacobian matrix.
There is no dividing edge kij that divides all 6 such minors. However, the edge k14 divides one of the 6
minors. Furthermore, when the edge k14 is removed, the resulting model is identifiable.

This example is interesting because it provides a counterexample to the possible conjecture that if an edge
kij is divides a minor of the Jacobian matrix, then the model obtained by removing kij is unidentifiable.
Rather, this example indicates that the edge must divide all minors of the Jacobian for its removal to result
in an unidentifiable model. More work remains to be done in understanding the differences between each of
the minors of the Jacobian matrix and the information each holds.

4 Discussion

In this work, we examined the effect of two types of model operation on the identifiability of a linear
compartment model: the first being the addition and removal of leaks, and the second being the removal
of a dividing edge of the singular locus equation. In examining these questions we obtained results on the

structure of coefficients in models with and without leaks and resolved part of Conjecture 2.1 for the case
of the coefficients on the left-hand side of the equation. Using these results, we concluded that the addition
of a leak to a model that is unidentifiable with more parameters that coefficients results in a model that is
unidentifiable with more parameters than coefficients. Future work would look to resolve the case where a
leak is added to a model that is unidentifiable and has a Jacobian matrix with a determinant of zero.

We made significant process toward resolving Conjecture 3.3 in showing that this conjecture is equivalent
to Conjecture 3.1 and therefore allowing conclusions to be drawn for classes of models where one of the
conjectures holds. Future work would seek to resolve Conjecture 3.1.

On the topic of the singular locus equation and dividing edges, we have generated several interesting examples
to provide insight on the behavior of those dividing edges and the effect of removing one such edge. In addition
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we have proposed three classifications corresponding to characteristics of dividing edges that we observed
as occurring often. Future work would seek to better understand these characteristics and their potential
connection to resolving Conjecture 3.4. Finally, we propose approach to examining this topic. Can we identify
which edges in a linear compartment model divide the singular locus? An answer to this question would
provide insight on the effects of their removal.
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6 Appendix A: Matlab code for calculation of the singular locus
of a linear compartment model

Here we include the Matlab code for the program used to determine the identifiability of linear compartment
models, calculate their singular locus and determine dividing edges for all examples included in this paper.

Program : Calculate the Singular Locus of Linear Compartment Model
Date : 06/09/2020
Author : Kate Johnston
Purpose : Calculates the singular locus of a linear compartment model as well as the dividing edges.

Input: Input compartment, output compartment, leak compartments and an adjacency matrix, X, describing
the edges where Xij = 1 if the edge from compartment i to compartment j exists.
Output: ’identifiable’ or ’unidentifiable’, the size of the Jacobian matrix, and - if the model is identifiable -
the singular locus and dividing edges.

%user input
in = ; %input node
out = ; %output node
n = ; %total number of nodes
leak = []; %contains each node with a leak, empty when there is no leak

%edges
%Xij = 1 - if edge ij exists (from node j to node i), else 0
X = [];
k1 = []; %array to hold created edges - (leave empty - no input required)

%create matrix A
A = sym(zeros(n,n));
for(i = 1:n)

for(j = 1:n)
if(i == j)

lk = false;
for(k = 1:length(leak)) %check to see if node has a leak

if(i == leak(k)) %if node has a leak
p = 0; %variable to hold sum of edges
%create edge for leak k0i and add to array of edges k1
a = str2sym(strcat(’k’, num2str(0), num2str(i)));
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k1 = [k1 a];
p = -a;
%sum of edges
for(t = 1:size(X,1))

%check ith column (corresponds to edges leaving node i of form kji)
if(X(t,i) == 1) %if there is an edge i to t

%create a sym k representing the edge
a = str2sym(strcat(’k’, num2str(t), num2str(i)));
%check if edge already exists
exists = false;
if(not(isempty(k1))) %check there are edges in k1

for(s = 1:length(k1)) %check all entries of k1 for a match
if(isequal(k1(s),a)) %if there is a match set ’exists’ = true

exists = true;
break

end
end

end
%if edge is not in array then add edge
if(exists == false)

k1 = [k1 a];
end

%add edge to sum
p = p - a;

end
end
%assign entry of A to be sum of edges
A(i,j) = p;
lk = true; %there is a leak

end
end

%if i is not a leak
if(lk == false)

p = 0;%variable to hold computed sum
%iterate over the rows of matrix X
for(t = 1:size(X,1))

%check ith column (corresponds to edges leaving node i)
if(X(t,i) == 1) %if there is an edge i to t

%create a sym k representing the edge
a = str2sym(strcat(’k’, num2str(t), num2str(i)));
%check if edge already exists
exists = false;
if(not(isempty(k1))) %check there are edges in k1

for(s = 1:length(k1)) %check all entries of k1 for a match
if(isequal(k1(s),a) == 1) %there is a match

exists = true;
break

end
end

end
%if edge is not in array then add edge
if(exists == false)

k1 = [k1 a];
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end
%add edge to sum
p = p + a;

end
end
%entry of matrix (is negative according to formula)
A(i,j) = -p;

end

else %else i 6= j

%check if there is an edge j to i
if(X(i,j) == 1)

%create corresponding k edge
a = str2sym(strcat(’k’, num2str(i), num2str(j)));
%check if edge already exists
exists = false;
if(not(isempty(k1))) %check there are edges in k1

for(s = 1:length(k1)) %check all entries of k1 for a match
if(isequal(k1(s),a) == 1)

exists = true;
break

end
end

end
%if edge is not in array then add edge
if(exists == false)

k1 = [k1 a];
end
%add edge to matrix A
A(i,j) = a;

else %else -¿ there is no edge j to i
A(i,j) = 0;

end
end

end
end

%create dI -¿ identity matrix
syms ddt;
dI = ddt.*eye(n);

%compute det(dI-A)
M = dI - A;
collect(det(M),ddt); %will print the determinant with terms collected by d/dt power
c y = coeffs(det(M),ddt); %removes coefficients of d/dt terms
c y = c y(c y =1); %remove the 1 coefficient
c y = flip(c y); %flip so in proper order (descending powers of ddt)

%compute det((dI-A)in/out)
B = M;
B(in,:) = []; %remove ”in” row of M
B(:,out) = []; %remove ”out” column of M
%create vector holding u coefficients
collect(det(B),ddt); %will print determinant with terms collected by d/dt power
c u = coeffs(det(B), ddt); %removes coefficients of d/dt terms
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%check for coefficient of 1 and remove if present
c u = c u(c u =1);
%flip vector to match order of ascending powers
c u = flip(c u);

%make a vector of all coefficients by combining c u and c y
c = cat(2, c y, c u);
%make jacobian matrix - rows correspond to coeffs, columns to edges (kij)
J = jacobian(c, k1);

%find determinants of all submatrices (if matrix is rectangular - else det of matrix)

if(size(J,2) ¡= size(J,1)) %check there are more coeffs than parameters
if(size(J,2) == size(J,1)) %if matrix is square

if det(J) = 0
fprintf(’identifiable’);
size(J)
det(J)
%dividing edges
factor(det(J))

else
fprintf(’unidentifiable’)
size(J)
det(J)

end
else %matrix is not square -¿ so multiple dets

dets = []; %array holds all determinants of submatrices
subrows = num2cell(nchoosek(1:size(J,1), size(J,2)), 2);
subm = cellfun(@(rows) J(rows, :), subrows, ’UniformOutput’, false);
for i = 1:length(subm)

dets = [dets det(cell2sym(subm(i)))]; %populate array with dets
end
size(J)
dets
%determine the dividing edges of singular locus by finding common
%dividing edges between determinants
dets2 = nonzeros(dets); %remove determinants = 0
k = intersect(factor(dets2(1)), factor(dets2(2)));

%check for common divisor between first and second det
for i = 2:length(dets2)
= intersect(k, factor(dets2(i)));
end
%print list of dividing edges
k

end

else %there are more parameters than coeffs so matrix is not full rank and unidentifiable
size(J)
fprintf(’matrix is unidentifiable’)

end
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