
Parallel SSEP and a Casimir Element of so2n

Mark Landry, Andrew Park

July 23, 2020

Abstract
Recent research has shown that one can obtain the generator of a Markov process through the choice

of a Casimir element and representation of a chosen Lie algebra. In this paper we introduce the notion of
a parallel symmetric simple exclusion process, a system made up of distinct SSEPs, in order to classify
symmetric processes obtained from so2n. These classifications involve a rigorously defined type of parallel
SSEP by use of properties relating to ideas of class, mass, and mass-preserving transformations that allow
concurrent moves elsewhere in the system.

1 Introduction

A Markov process is a continuous-time physical process with a discrete number of states where states jump
to other states at random times and the probabilities depend only on the present state the process is in, not
past states the process has been in. Generator matrices are a tool used often to encode the transition rates
between states in a Markov process, and also have implications for probabilities regarding behavior of the
process.

Recently, it has become more popular to study these stochastic processes through the Lie algebra interpre-
tation of their generators; it has been shown that there is a connection between the two subjects that allows
the use of algebraic methods in studying the properties of certain Markov processes.

One example of this method comes from the Lie algebra sl2, which can be used to obtain the generator
matrix of the simple symmetric exclusion process (SSEP). The SSEP particle system involves a lattice with
two sites, each of which can be empty or contain a particle; a particle can jump to an empty neighboring
site but is blocked from jumping if the site is occupied. Moreover, all jump rates are equal due to symmetry
in the model.

The generator for the SSEP model can be obtained using a distinguished central element called the Casimir
element and a representation of the universal enveloping algebra of sl2; this method can be generalized to
other Lie algebras to obtain the generators of other processes. Naturally, more complicated Lie algebras
result in more complicated systems. For this paper, we aim to classify a symmetric Markov process obtained
from so2n for n > 1.

2 Background

2.1 Generator Matrices and Probability in Markov Processes

First, we list a well-known proposition from the study of Markov processes that demonstrates one of the
implications a generator matrix has for probabilities within its corresponding Markov process.

Proposition 1. Let Q be a generator matrix, and let qxy be the (x, y) entry of Q. Let Tx be the holding
time at state x. If qxx 6= 0, then P (XTX

= y|X0 = x) =
qxy

−qxx
.

This proposition helps in understanding how states transition between each other in a Markov process, and
is incredibly useful in describing a Markov process given a generator matrix.

1

2.2 so2n as a Lie Algebra

so2n is the Lie algebra of matrices of the form:

so2n(C) =

{(
A B
C D

) ∣∣∣∣A,B,C,D ∈ Cn×n, A = −DT , B = BT , C = CT

}
Let Ei,j be the matrix with 1 in the (i, j) entry and 0 elsewhere. A Cartan subalgebra h of so2n is the
subalgebra of diagonal matrices of the form Hi = Ei,i − En+i,n+i.

Let Li be defined as the linear map on the Cartan subalgebra where Li maps H to its i-th diagonal entry.
Then the roots and root vectors of so2n are defined for i, j ≤ n as:

• Xi,j = Ei,j − En+j,n+i has root Li − Lj

• Yi,j = Ei,n+j − Ej,n+i has root Li + Lj

• Zi,j = En+i,j − En+j,i has root −Li − Lj

The positive roots are R+ = {Li+Lj}i<j∪{Li−Lj}i<j , and the simple roots are L1−L2, L2−L3, . . . , Ln−1−
Ln, Ln−1 + Ln. This implies that the rank of so2n is n, which corresponds to the number of H matrices.
Additionally, in so2n, the Killing Form can be defined using B(X,Y) = (2n− 2) Tr(XY).

3 Main Results

3.1 Analyzing the Generator Matrix from so2n

3.1.1 Obtaining Gn

In this section, we describe the process of arriving at Gn, a generator matrix of a Markov process, from the
Casimir element of a Lie algebra of the form so2n for n ≥ 2.

First, note that the Cartan-Weyl Basis and corresponding dual basis for any so2n follows the same form.
Let B be the Cartan Weyl Basis of so2n and let B′ be the dual basis with respect to B. The elements of B
and B′ are the following:

For all i ≤ n:

• Hi ∈ B has dual 1
4n−4Hi ∈ B′.

For all i < j ≤ n:

• Xij ∈ B has dual 1
4n−4Xji ∈ B′.

• Xji ∈ B has dual 1
4n−4Xij inB

′.

• Yij ∈ B has dual − 1
4n−4Zij ∈ B′.

• Zij ∈ B has dual − 1
4n−4Yij ∈ B

′.

These counterparts can be calculated based on the Killing Form (Hi and Xij products have trace 2, and Yij
and Zij products have trace −2). Note that B′ contains scaled versions of every element of B, showing that
because B is a basis, B′ is as well.

The Casimir element is Ω =
∑
i

AiA
i where each Ai is a unique element of the Cartan-Weyl basis and Ai is

its counterpart in the dual basis. Let C2n be the usual vector representation on so2n, so ρC2n⊗C2n defines

2

a representation. Let ρ = ρC2n⊗C2n . Thus, ρ(Ω) =
∑
i

ρ(Ai)ρ(Ai) defines a 4n2 × 4n2 matrix. Let ρij(Ω),

1 ≤ i, j ≤ 2n denote its entries.

Let C be a 4n2 × 4n2 diagonal matrix with entries ci such that ci =
∑
j

ρij(Ω). Let Gn be the matrix found

by negating rows of ρ(Ω) − C to force each diagonal entry to be non-positive. This leads to a generator
matrix with all entries finite.

Python code demonstrating the steps of this process to build Gn from n is located in Appendix A.

Remark. Previous research on similar Lie algebras has used C = kI for scalar k and then used conjugation
to arrive at a generator matrix [2] as the matrix C. In so4, this process and the definition of C described
above arrive at the same result, and for n > 2, conjugation fails to arrive at a generator matrix where all
entries are finite.

3.1.2 Properties of Gn

In this section, we outline properties of Gn that will be helpful in analyzing the states of the Markov process
Gn describes.

Lemma 1. The representation of the Casimir element ρ(Ω), a 4n2×4n2 matrix, can be written as a 2n×2n
matrix of blocks of size 2n× 2n in block form as:

ρ(Ω) =
1

2n− 2



D1 X21 X31 · · · Xn,1

X12 D2 X32 · · · Xn,2

X13 X23 D3 · · · Xn,3

· · · · · · · · · · · · · · ·
X1,n X2,n X3,n · · · Dn

0 −Z12 −Z13 · · · −Z1,n

Z12 0 −Z23 · · · −Z2,n

Z13 Z23 0 · · · −Z3,n

· · · · · · · · · · · · · · ·
Z1,n Z2,n Z3,n · · · 0

0 −Y12 −Y13 · · · −Y1,n
Y12 0 −Y23 · · · −Y2,n
Y13 Y23 0 · · · −Y3,n
· · · · · · · · · · · · · · ·
Y1,n Y2,n Y3,n · · · 0

Dn+1 −X12 −X13 · · · −X1,n

−X21 Dn+2 −X23 · · · −X2,n

−X31 −X32 Dn+3 · · · −X3,n

· · · · · · · · · · · · · · ·
−Xn,1 −Xn,2 −Xn,3 · · · D2n


where Di = (2n− 1)I +Hi and Dn+i = (2n− 1)I −Hi for i ≤ n.

Proof. We can partition the Cartan Weyl basis for so2n into disjoint subsets according to pairs (i, j) for
i < j ≤ n, keeping the Cartan subalgebra generators (Hi matrices) separate. Each of the subsets will, for a
pair (i, j), contain Xij , Xji, Yij , Zij .

Suppose we take an arbitrary part of the partitioned basis, i.e. choose (i, j) such that i < j ≤ n. We will
analyze the contribution this part (specifically, the Xij , Xji, Yij , and Zij) makes to the Casimir representa-
tion.

Each of these matrices can have their representation written in block form, which places the matrix on each
of the diagonals and places I’s, the identity matrix, in the locations indicated by the matrix. For example,
in so4:

ρ(X12) = X12 ⊗ I4 + I4 ⊗X12 =


X12 I 0 0

0 X12 0 0
0 0 X12 0
0 0 −I X12

 .

Take ρ(Xij) and ρ(Xji) using this form. Ignoring the 1
4n−4 scaling, we want to analyze ρ(Xij)ρ(Xji) +

ρ(Xji)ρ(Xij). In order to do so, we will analyze a 6×6 block matrix which captures the contributions to the

3

i, j, k, n+i, n+j, n+k block rows and columns, where k ≤ n such that k 6= i, j. Letting Pij = XijXji+XjiXij ,
this results in the following matrix:

ρ(Xij)ρ(Xji) + ρ(Xji)ρ(Xij) =


Pij + I 2Xji 0 0 0 0
2Xij Pij + I 0 0 0 0

0 0 Pij 0 0 0
0 0 0 Pij + I −2Xij 0
0 0 0 −2Xji Pij + I 0
0 0 0 0 0 Pij

 .

Notice that Pij is a diagonal matrix with 1 on the i, j, n + i, n + j diagonals and 0 elsewhere. The block
form of the identity matrix also has an I added to the Pij at the i, j, n+ i, n+ j rows. This means that, in
the full ρ(Ω) matrix, the X terms contribute 2(n− 1)I to each diagonal term. Notice also that Xij and Xji

appear in blocks of ρ(Ω) at locations determined by i, j, n+ i, n+ j.

Likewise, take ρ(Yij) and ρ(Zij) using this form. Note that the coefficient of the dual basis elements will be
negative (−14n−4), meaning these matrices will be negated before being included in the Casimir sum. Analyzing
this matrix the same way as the X’s, and letting Rij be YijZij + ZijYij , we get the result:

ρ(Yij)ρ(Zij) + ρ(Zij)ρ(Yij) =


Rij − I 0 0 0 2Zij 0

0 Rij − I 0 −2Zij 0 0
0 0 Rij 0 0 0
0 2Yij 0 Rij − I 0 0

−2Yij 0 0 0 Rij − I 0
0 0 0 0 0 Rij

 .

Notice that Rij is a diagonal matrix with −1 on the i, j, n + i, n + j diagonals and 0 elsewhere. The block
form of the identity matrix also has an I subtracted from Rij at the i, j, n+ i, n+ j rows. This means that,
in the full ρ(Ω) matrix, since this matrix is negated, the Y,Z terms contribute 2(n − 1)I to each diagonal
term. Notice also that Yij and Zji appear in locations determined by i, j, n + i, n + j, and again note that
these will be negated in the final result.

In summary, we have shown that from pairs of (i, j) in the X,Y, Z elements of the basis, we generate each
off-diagonal block based on one root vector and an equal value of 4(n− 1)I in each diagonal block.

To fully analyze a block form, we must also analyze the contributions of the H matrices to ρ(Ω). However,
these matrices are diagonal, so their representations will also be diagonal and they will only contribute to
the diagonal blocks. We can define a block representation of Hi, which puts Hi in each diagonal block, adds
I in the i-th diagonal block, and subtracts I in the n+ i-th diagonal block.

Define a 4 × 4 matrix indexed by i, j, n + i, n + j such that j 6= i and j ≤ n. The result is the following
matrix (up to scaling):

ρ(Hi)ρ(Hi) =


H2

i + 2Hi + I 0 0 0
0 H2

i 0 0
0 0 H2

i − 2Hi + I 0
0 0 0 H2

i

 .

Adding this up for all i shows that this contributes differently to each diagonal. Let di be the i-th diagonal
block of

∑
i

ρ(Hi)ρ(Hi). Then di = 2I + 2Hi and dn+i = 2I − 2Hi for i ≤ n.

When we put all of these pieces together, add the scaling back in (putting 1
4n−4 on the outside of the matrix,

as this was the coefficient in every case), and pull a constant of 2 out of the matrix (leading to 1
2n−2 as the

coefficient), we get the block form in the lemma.

Lemma 2. The Gn matrix is the generator of a Markov process.

4

Proof. By the procedure used to construct the Gn from ρ(Ω), it immediately follows that all of the rows (in
the normal sense) of the resulting matrix sum to 0 and their diagonals are non-positive. Therefore it suffices
to show that all off-diagonal entries of are non-negative.

Using the block form of ρ(Ω), we see that the set of rows of ρ(Ω) − C with negative elements is given by
S = {n + 1, n + 1 + 1(2n + 1), n + 1 + 2(2n + 1), . . . , 2n2, 2n2 + 1, 2n2 + 1 + 1(2n + 1), . . . , 4n2 − n}. This
constitutes the n+ 1 row of the 1st block, the n+ 2 row of the 2nd block., etc., up to the 2n row of the n-th
block, and then the 1st row of the n+ 1-th block, the 2nd row of the n+ 2-th block, etc. We also notice that
each of these rows is given a negative value by every block that is not on the diagonal or the 0 diagonals of
the upper right and bottom left. This means that each of these rows contains 2n − 2 off diagonal negative
elements, all of which will be −1, because they come from X,Y, Z matrices.

We want to show that the diagonal value in each row of S is equal to 2n− 2, which would imply that these
rows already sum to 0 and thus will solely be negated, not adjusted by a constant. This is true because, in
the Di’s, 2n − 2 will occur at the n + 1 row, and then every 2n + 1 rows up to 2n2. In the Dn+i’s, 2n − 2
will occur at the 2n2 + 1 row and then every 2n+ 1 rows after that up to 4n2 − n. Thus, the rows indexed
by S will have a 0 on that diagonal of C and will be the rows negated at the end.

Note that all other rows of C will have non-negative diagonals and non-negative off-diagonals, which will
force the diagonals to become negative when C is subtracted and thus the off-diagonals will remain positive.

Hence, all off-diagonal entries are non-negative, and thus the matrix Gn is a generator matrix of a Markov
Process.

Past research has shown that the Markov process this generator matrix describes will involve a particle
system with 2 sites, which can be expanded to N sites using a certain formula on the generator matrix. [1]

Because Gn is a 4n2 × 4n2 matrix, we can see that Gn will represent a Markov process with 4n2 states.

Lemma 3. All non-zero off-diagonal entries of Gn are equal.

Proof. It follows from block form that all off-diagonal entries of Gn occur in the off-diagonal blocks, which
are determined solely by the X,Y, Z matrices. However, the X,Y, Z matrices contain entries of only 1, 0,−1.
Since all off-diagonal elements are non-negative, this implies that all nonzero off-diagonal entries of the
matrix are the same and, when scaling is taken into account, equal to 1

2n−2 .

This lemma is useful because it means that the diagonals will follow the same pattern as the rows in regards
to what states they represent, and since all off-diagonal entries are equal, the diagonal of a row captures
what kind of state it represents in a Markov process.

3.1.3 Expected Properties of the Markov Process from Gn

In this section, we will use the properties of Gn to show what states the Markov process that Gn describes
would need to include.

Lemma 4. The Markov process with generator Gn has 2n absorbing states.

Proof. First, note that an absorbing state is indicated in a generator matrix by a row where all entries are
0.

Notice from block form that the first row of Gn for any n has 0’s for all off-diagonal elements (the first row
of all Xj1 and Z1j is all 0’s). This means that the first diagonal entry of C will be equal to the first diagonal
entry of ρ(Ω), which is 2n

2n−2 and this will return an entire row of 0’s.

Moreover, because every off-diagonal entry is positive and all nonzero off-diagonals are equal, this implies
that every time the value 2n

2n−2 recurs in the diagonal, it implies an absorbing state. By the structure of the
D matrices, this occurs once in every D block, of which there are 2n total, implying 2n rows of all 0’s. In a
generator matrix, these types of rows imply absorbing states, showing that the Markov Process represented
by this generator matrix has 2n absorbing states.

5

Definition 1. We define a maximal choice row as a row in which no other rows have a greater number
of nonzero off-diagonal elements. The set of all maximal choice rows is called the maximal choice set.

Lemma 5. The generator Gn has 2n maximal choice rows, each of which have 2n− 2 non-zero off-diagonal
entries at other maximal choice rows.

Proof. Let S = {n+1, n+1+1(2n+1), n+1+2(2n+1), . . . , 2n2, 2n2+1, 2n2+1+1(2n+1), . . . , 4n2−n}. We
want to show S is the maximal choice set. Recall from Lemma 2 that each row of S has 2n− 2 off-diagonal
elements. Because each block of block form, as given by a root vector, has at most 1 entry in a row, and
each block row has a 0 block, 2n − 2 is the maximal number of choices a row can have. This means that
every element of S is a maximal choice row.

Moreover, the structure of the block form matrix shows that every other row has less than 2n−2 off-diagonal
entries, implying that S is the maximal choice set. Because S has cardinality 2n, there are 2n maximal choice
rows.

By a similar process to finding the rows of Gn with negative elements, thus populating S, and taking
advantage of symmetry within the matrix, we can see that negative off-diagonals also only occur in columns
indicated by elements of S. This implies that rows of S only communicate to other rows of S, making S
a communicating class. Moreover, since each root vector has only one negative off-diagonal and using the
structure of the block matrix, each row in S fails to immediately reach a unique other row (based on the
location of the 0 matrix), but all 2n− 2 other states in S can be reached.

Definition 2. We define a pairwise row as a row with exactly one nonzero off-diagonal entry. If pairwise
row r has its nonzero off-diagonal entry at column s, and s is a pairwise row with nonzero off-diagonal entry
at column r, rows r and s are called pairwise states.

Lemma 6. Any row in Gn either represents an absorbing state, or is a maximal choice row, or is a pairwise
state.

Proof. Let r be a row of Gn that does not represent absorbing state and is not maximal choice row. Because
r does not represent an absorbing state, it must have at least one nonzero off-diagonal element. All of the
negative off-diagonal elements of ρ(Ω) are used in maximal choice rows, and thus we wish to study the
positive off-diagonal elements of ρ(Ω).

First, we show that r is a pairwise row. If r is in the top half of Gn, r is in a block row s made up of three
types of matrices: Xks for k ≤ n, Zts for t < s, and −Zsq for q > s. Each Xks matrix will have its positive
element in row k, each Zts will have its positive element in row n + t, and each −Zsq will have its positive
element in row n + q. This forms a partition of all of the non-absorbing and non-maximal rows in the top
half of the matrix, so r only contains one off-diagonal positive element. Similarly, we can show that if r is
in the bottom half of the block form matrix, r only contains one off-diagonal positive element. Thus, r is a
pairwise row.

Next, we know that for each r, its one off-diagonal element is in a block determined by a root vector. We
will show that this root vector implies a corresponding pairwise row r′ that makes r, r′ pairwise states. This
can be done in 4 cases:

1. If r is a row that has its positive entry in the block Xji, then it has positive entry at matrix coordinates
(j + (i − 1)2n, i + (j − 1)2n). The block Xij has its positive entry at matrix coordinates (i + (j −
1)2n, j + (i− 1)2n). If r′ is the row that has its positive entry in block Xij , then r and r′ are pairwise
states.

2. If r is a row that has its positive entry in block −Xij , then it has positive entry at matrix coordinates
(2n2 + (i − 1)2n + n + i, 2n2 + (j − 1)2n + n + j). The block −Xji has its positive entry at matrix
coordinates (2n2 + (j− 1)2n+n+ j, 2n2 + (i− 1)2n+n+ i). If r′ is the row that has its pairwise entry
in block −Xji, then r and r′ are pairwise states.

6

3. If r is a row that has its positive entry in block Yij , then it has positive entry at matrix coordinates
(2n2 + (j − 1)2n + i, (i − 1)2n + n + j). The block −Zij has its positive entry at matrix coordinates
((i− 1)2n+ n+ j, 2n2 + (j − 1)2n+ i). If r′ is the row that has its pairwise entry in block −Zij , then
r and r′ are pairwise states.

4. If r is a row that has its positive entry in block Zij , then it has its positive entry at matrix coordinates
((j − 1)2n + n + i, 2n2 + (i − 1)2n + j). −Yij as its positive entry at matrix coordinates (2n2 + (i −
1)2n + j, (j − 1)2n + n + i). If r′ is the row that has its pairwise entry in −Yij , then r and r′ are
pairwise states.

Hence, we see that every row that is not absorbing or maximal choice has exactly one positive off-diagonal
and communicates to and from exactly one other row.

We have seen that the rows of Gn imply a Markov Process that can be split up into completely independent
communicating classes, i.e. no state in a communicating class can reach a state in another communicating
class. We have 2n communicating classes with 1 row (absorbing states), 1 communicating class with 2n rows
such that each row can reach all others but 1 uniquely (maximal choice rows), and 2n2− 2n communicating
classes of pairwise states, totaling 4n2 states. We will now turn our focus to the Type-m Parallel SSEP and
show that these criteria apply to this particle system.

3.2 The Particle System

Definition 3. A Parallel SSEP with N sites is a system that has two separate 1-dimensional SSEPs
with N ≥ 2 sites each. Each site can either be empty or have a particle on it, and while particles can interact
with neighboring sites on the same lattice, they cannot jump to the other lattice. A Parallel SSEP with 2
sites will be referred to as a Basic Parallel SSEP.

Figure 1: A possible configuration of a Parallel SSEP with 9 sites

Definition 4. A Type-m Basic Parallel SSEP is a Basic Parallel SSEP where the lower lattice allows
particles of mass 1, the upper lattice allows particles of mass ω ∈ { 1

m ,
2
m , . . . ,

m−1
m , 1}, and the following

properties hold:

• Mass Order Property: A particle can only move if no lighter particles can move.

• Balance Property: A set of balanced states exists in which the two lattices each have mass 1 and
particles are able to undergo fusion and fission, defined respectively as donating mass to or taking mass
from a neighboring site. These mass-preserving processes allow, but do not force, a concurrent move
in the lower lattice.

• Class Property: A particle in an unbalanced state is able to switch places with neighboring particles
of higher mass.

Lemma 7. A Type-m Basic Parallel SSEP has 4(m+ 1)2 states.

Proof. By the definition of Type-m Basic Parallel SSEP, the particle system contains 2 parallel latices with
two sites each. The top lattice consists of 2 sites with m + 1 configurations each (m types of particles or
empty). Thus, the top lattice has (m+ 1)2 configurations.

Similarly, because the bottom lattice consists of 2 sites with 2 states each, there are 4 possible configurations
of the bottom lattice. Since all possible combinations of a configuration of the top lattice and a configuration
of the bottom lattice are valid states, there are 4(m+ 1)2 states.

7

Lemma 8. A Type-m Basic Parallel SSEP has 2(m+ 1) absorbing states.

Proof. Absorbing states are reached by having each lattice occupied by either a pair of identical particles or
a pair of empty sites. There are m+ 1 ways to accomplish this on the top lattice, and independently 2 ways
to accomplish this on the bottom lattice. Thus, there are 2(m+ 1) absorbing states.

Definition 5. We define maximum-choice states as the states such that no other possible states in the
system have more choices, states that can be immediately reached.

Lemma 9. A Type-m Basic Parallel SSEP has 2(m+ 1) maximum-choice states. Each of these states have
2m choices, each of which is another maximum-choice state.

Proof. First we will prove that maximum-choice states only occur when the top and bottom lattice are equal
at mass 1 each, which is a balanced state. Begin by noting that if the lattices are equal at mass 1, the state
necessarily has more than 1 choice. Assume then that the top and bottom lattice are not equal, for if they
are equal at mass 2 we are in an absorbing state. Then, if there is a movable particle of lowest mass it will
only have 1 choice of movement, thus an unbalanced state has at most 1 choice. Since balanced states are
our only maximum-choice states, we then know that unbalanced states can not be maximum-choice.

Thus, maximum-choice states occur only when the mass of the top lattice and the mass of the bottom lattice
are equal at 1. This requires the two sites on the top lattice to have mass summing to 1, and there are m+ 1
ways to arrange this. Independently, one particle of mass 1 must be on one of the 2 sites on the bottom
lattice. Thus, there are 2(m+ 1) maximum-choice states.

To prove the second part, we let our system be in a maximum-choice state. We first note that all state
changes will preserve the mass of both the top and bottom lattice, so a maximum-choice state can only
change into other maximum-choice states. We then have at most 2(m + 1) choices, and since a state can’t
change to itself we have at most 2m+ 1 choices. We note that we have one particle of mass 1 on the bottom.
There are two cases a balanced state can follow:

1. If our top lattice also has just one particle of mass 1 on one of its sites, then the state where both
particles switch sites simultaneously is not a possible choice, but all other balanced states are reachable.

2. Alternatively, if have two particles of mass less than 1 on the top lattice which add up to mass 1, then
the state where the top lattice’s configuration stays the same and the bottom particle switches sites is
not a possible choice, but all other balanced states can be reached.

We then have 2m remaining choices, which are easily shown to all be reachable from the current state.

Lemma 10. A state in the Type-m Basic Parallel SSEP that is not absorbing or balanced must be pairwise.

Proof. Let X be a state that is not absorbing or balanced. X cannot be the empty state, so it must have
a movable particle of lowest mass. This particle will switch sites, resulting in the state X ′. However, the
movable particle of lowest mass from X is still the movable particle of lowest mass in X ′, and X ′ will then
switch back to X. Thus, X is a pairwise state.

Theorem 1. Let m = n− 1. The generator matrix of a Type-m Basic Parallel SSEP is exactly Gn.

Proof. The previous lemmas demonstrate that the states implied in a Markov Process by the generator
matrix, derived from a representation of a Casimir Element of so2n, are identical to the states in a Type-m
Basic Parallel SSEP. The 2n rows of all 0 in the matrix correspond to 2n absorbing states in the system, the
2n maximal choice rows correspond to balanced, or maximum-choice, states, and everything else in both is
split up into pairwise states. Hence, we conclude by state analysis that Gn as a generator matrix represents
Type-m Basic Parallel SSEP.

8

3.2.1 An Example: so4

We analyze a specific case of so2n, specifically the n = 2 case. Note that so4 ∼= sl2 ⊕ sl2, lending support to
the Parallel SSEP model.

The Cartan-Weyl basis for so4 is B = {H1, H2, X12, X21, Y12, Z12}. The Killing Form calculation implies that
the dual basis for the Cartan-Weyl Basis is B′ = { 14H1,

1
4H2,

1
4X21,

1
4X12,− 1

4Z12,− 1
4Y12}, corresponding to

the order of the original Cartan-Weyl basis. Using the process described above, we arrive at a generator
matrix for a 16-state Markov process.

The 16× 16 generator matrix that results from so4 is the following matrix:

G2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 1

2 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 1
2 0 0 0 0 0 1

2 0 0

0 0 0 − 1
2 0 0 0 0 0 0 0 0 1

2 0 0 0

0 1
2 0 0 − 1

2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2 0 0 1
2 0 0 0 0 0 0

0 0 1
2 0 0 0 0 −1 1

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2 −1 0 0 0 0 1

2 0 0

0 0 0 0 0 0 1
2 0 0 − 1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1

2 0 0 1
2 0

0 0 0 1
2 0 0 0 0 0 0 0 0 − 1

2 0 0 0

0 0 1
2 0 0 0 0 0 1

2 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 − 1

2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


As the generator of a Markov process, this matrix implies that there are 4 absorbing states (Rows 1, 6, 11,and
16) and a communicating class with 4 maximum-choice rows with 2 choices each (Rows 3, 8, 9, and 14). The
other states are divided into communicating classes of a pair that switches back and forth (Rows 2 & 5, 4
& 13, 7 & 10, and 12 & 15). Note that G2 can be rewritten as a block matrix based on the communicating
classes of these states.

Figure 2: 16 Type-1 Basic Parallel SSEP Configurations

The full list of states of the Type-1 Basic Parallel SSEP can be seen in Figure 2. It is straightforward to
show that this particle system is generated by the generator derived before, as this particle system has four
absorbing states (the 4 corners), four balanced states with two choices each (the inner 2 × 2 square), and
eight states separated into four pairs that only switch back and forth (the 8 non-corner edges), the same
states in the same communicating classes that are suggested by G2. Also, when a state has multiple choices
it transitions to any one of them at an equal rate, as shown in the generator.

3.3 Expansion of the Particle System

Definition 6. A subsystem of a Parallel SSEP with N sites is a subset of the system such that it is a Basic
Parallel SSEP. A Parallel SSEP with N sites is made up of N − 1 overlapping subsystems which define the
local properties of the entire system.

9

Definition 7. A Type-m Parallel SSEP with N sites is a Parallel SSEP with N sites such that every
subsystem is a Type-m Basic Parallel SSEP.

Lemma 11. Let S be the set of states of a Type-m Basic Parallel SSEP such that the top-left site is fixed
in state a and the bottom-left site is fixed in state b. There are then 2(m + 1) states in S where 1 state is
absorbing, 1 state is balanced, and 2m states that are pairwise.

Proof. Clearly, we have 2 choices for the bottom-right site and m+ 1 choices for the top-right site giving us
a total of 2(m+1) states. Now, note that we have one absorbing state: top-right in state a and bottom-right
in state b. We also have one balanced state: top-right in state 1− a and bottom-right in state 0 if b = 1 or
state 1 if b = 0. By Lemma 10 the remaining states are pairwise and so we have 2m pairwise states.

Lemma 12. A Type-m Parallel SSEP with N sites has 2(m+ 1) maximum-choice states

Proof. Since the total number of choices of the system is the sum of the choices of its subsystems, we know
that our maximum-choice states are those such that every subsystem is maximum-choice. Let our first
subsystem be balanced, then by Lemma 11 we know that there is only one way for the rest of the subsystems
to be balanced. Thus, the total number of maximum-choice states is simply the total number of balanced
states for a Type-m Basic Parallel SSEP, which by Lemma 9 is 2(m+ 1).

Lemma 13. A Type-m Parallel SSEP with N sites has 2(m+ 1) absorbing states

Proof. The proof is equivalent to the proof of Lemma 12, with absorbing states substituted for maximum-
choice and balanced states.

Theorem 2. Let L be the generator matrix from Theorem 1, and let:

LN =

N−1∑
i=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗L⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−1−i

(1)

LN is then the generator of a Type-m Parallel SSEP with N sites.

Proof. To provide motivation for the proof, note by Lemma 11 that if our first subsystem is in a given state,
we then have (2(m + 1))N−2 possible states for the entire system. Since our first subsystem has 4(m + 1)2

choices by Lemma 7 we then get (2(m+ 1))N total states for our system as expected. This reflects the idea
that we can obtain our system’s states by starting with our choices for the first subsystem, and then working
our way subsystem by subsystem across the rest of our system. This idea combined with the previously
stated fact that the total choices for a state of our system is the sum of the choices of the subsystems gives
us our ability to prove this theorem using (1), the formula for LN .

By Lemma 1, our generator matrix L has diagonal in the form of the multiset {0,−1,−1, . . . ,−1︸ ︷︷ ︸
2m

,−2m}

repeated 2(m+ 1) times. This can be interpreted as the 2(m+ 1) ways to choose the leftmost sites’ states,
where the multisets then represent the ways to finish the subsystem and their resulting choice-counts seen
in Lemma 11. Now, we will show that the ith term in (1) is corresponding directly to the ith subsystem. We
are first making (2(m+ 1))i−1 diagonal copies of L to reflect the (2(m+ 1))i−1 possible states of the system
to the left of the ith subsystem. We then take what we have so far and make (2(m + 1))N−1−i diagonal
copies of each of its diagonal elements to allow for the (2(m + 1))N−1−i possible ways to choose the rest
of the system given the ith and previous subsystems have been chosen, and we note that these paths are
reflected by the multiset expected from Lemma 11. Thus, by summing up the terms of (1) we are summing
up the choices for each possible subsystem which completely define the entire system by Definition 7.

Python code to build a model of this particle system is included in Appendix B, as well as a function that
counts the number of choice states that emerge from the model for a given m and N value.

10

Acknowledgements

This research was conducted as part of the NSF-funded REU (DMS-1757872) at Texas A&M University. We
would like to thank our mentor, Dr. Jeffrey Kuan, and our TA’s, Ola Sobieska and Zhengye Zhou, for their
work in helping us with this project.

References

[1] Gioia Carinci, Cristian Giardinà, Frank Redig, and Tomohiro Sasamoto. A generalized asymmetric
exclusion process with Uq(sl2) stochastic duality. Probab. Theory Related Fields, 166(3-4):887–933, 2016.

[2] Jeffrey Kuan. Stochastic duality of ASEP with two particle types via symmetry of quantum groups of
rank two. J. Phys. A, 49(11):115002, 29, 2016.

A Appendix: Generator Matrix Python Code

The following code provides functions in Python that follow all of the steps outlined in the paper to arrive
at a generator matrix (Gn) of the Lie Algebra so2n for a given n. The LN function will take Gn and expand
it to a generator matrix for N sites, using the expansion formula described in Theorem 2.

import numpy as np
import math
n_default = 3
Defines matrix operations in terms of numpy operations.
def TensorProduct(A,B):

return np.kron(A,B)
def Identity(n):

return np.eye(n)
def MatrixProduct(A,B):

return np.matmul(A,B)
def EmptyMatrix(n):

return np.zeros((n,n))
Defines H, X, Y, and Z matrices in so2n.
def H(i, n = n_default):

m = EmptyMatrix(2*n)
m[i-1, i-1] = 1
m[n+i-1, n+i-1] = -1
return m;

def X(i, j, n = n_default):
m = EmptyMatrix(2*n)
m[i-1, j-1] = 1
m[n+j-1, n+i-1] = -1
return m

def Y(i, j, n = n_default):
m = EmptyMatrix(2*n)
m[i-1, n+j-1] = 1
m[j-1, n+i-1] = -1
return m

def Z(i, j, n = n_default):
m = EmptyMatrix(2*n)
m[n+i-1, j-1] = 1
m[n+j-1, i-1] = -1
return m

Populates a list creating the Cartan Weyl Basis for so2n given n.
def cartanweylbasis(n=n_default):

lst = []
for i in range(n):

for j in range(n):
if i == j:

lst.append(H(i+1,n))
if i < j:

11

lst.append(X(i+1,j+1,n))
lst.append(X(j+1,i+1,n))
lst.append(Y(i+1,j+1,n))
lst.append(Z(i+1,j+1,n))

return lst
Calculates the dual basis counterpart of a CW Basis element of so2n.
def dual(A,n=n_default):

matrix=np.zeros((2*n,2*n))
for i in cartanweylbasis(n):

if (MatrixProduct(A,i)).trace() != 0:
matrix=(1/((2*n-2)*(MatrixProduct(A,i)).trace()))*i;

return matrix
Calculates standard representation of Casimir (2n x 2n matrix)
def Casimir(n=n_default):

matrix=EmptyMatrix(2*n)
for A in cartanweylbasis(n):

matrix = matrix + (np.matmul(A,dual(A,n)))
return matrix

Tensor Product Representation of an element in basis.
def representation(A,n=n_default):

return TensorProduct(A,Identity(2*n))+TensorProduct(Identity(2*n),A)
Calculates Casimir term that comes from one basis element. (Representation times representation of dual)
def CasimirTerm(A,n=n_default):

return MatrixProduct(representation(A,n),representation(dual(A,n),n))
Calculates rho(Omega), representation of Casimir element
def RhoOmega(n=n_default):

size=4*n*n
matrix=EmptyMatrix(size)
for A in cartanweylbasis(n):

matrix = matrix + CasimirTerm(A,n)
return matrix

Creates the C matrix, where each diagonal entry is sum of row from RhoOmega.
def C_Creator(n=n_default):

size=4*n*n
matrix=Identity(size)
RO=RhoOmega(n)
for i in range(size):

rowtot=0
for j in range(size):

rowtot=rowtot+RO[i,j]
matrix[i,i]=rowtot

return matrix
Subtracts of the correction term.
def RhoOmegaMinusC(n=n_default):

matrix=RhoOmega(n)
return matrix-C_Creator(n)

Negates rows with positive diagonals, returning generator.
def Generator(n=n_default):

size=4*n*n
matrix=RhoOmegaMinusC(n)
for i in range(size):

if matrix[i,i]>0:
for j in range(size):

if matrix[i,j]!=0:
matrix[i,j]=-1*matrix[i,j]

return matrix
Expands generator to be generator matrix for N sites, takes Generator(n) and n sites.
def LN(L=Generator(),N=3):

if (N<3 or int(N) != N):
print("N must be an integer greater than 2")
return

def f(j):
id_size=int(math.sqrt(L.shape[0]))
if j==0:

right_id=np.identity(id_size)
for i in range(1,N-j-2):

right_id=np.kron(right_id,np.identity(id_size))
return np.kron(L,right_id)

12

elif j==N-2:
left_id=np.identity(id_size)
for i in range(1,j):

left_id=np.kron(left_id,np.identity(id_size))
return np.kron(left_id,L)

else:
left_id=np.identity(id_size)
for i in range(1,j):

left_id=np.kron(left_id,np.identity(id_size))
right_id=np.identity(id_size)
for i in range(1,N-j-2):

right_id=np.kron(right_id,np.identity(id_size))
return np.kron(np.kron(left_id,L),right_id)

return sum(f(j) for j in range(0,N-1))

B Appendix: Particle System Python Code

The following code builds the particle system in Python, as well as includes functions to count the number of
different choice states for a given system. It uses the coordinate system (lattice, index, mass) where lattice
is 0/1 for top/bottom lattice, index starts at 0 from leftmost site, and mass is an integer (take the masses
from the type-m definition and scale by m). A state is then a collection of coordinates.

import numpy as np

def empty_state(N): #creates Parallel SSEP with N empty sites
return np.zeros((2,N))

def auto_state(m,N,tuple_list): #auto enter particles, raises errors
state=empty_state(N)
for tup in tuple_list:

lattice=tup[0]
index=tup[1]
mass=tup[2]
if lattice != 0 and lattice != 1:

raise ValueError('{} is bad (lattice)'.format(tup))
elif index not in range(0,N):

raise ValueError('{} is bad (index)'.format(tup))
elif mass not in range(0,m+1):

raise ValueError('{} is bad (mass)'.format(tup))
elif lattice==1 and (mass != 0 and mass != m):

raise ValueError('{} is bad (mass-lattice)'.format(tup))
state[lattice,index]=mass

return state

def energy_choices(state,index,shift):
#gives the amount of choices the bottom pairing has given energy from top
choices=1
bottom=state[1]
if bottom[index+shift]!=0 and bottom[index]==0:

choices+=1
if bottom[index]!=0 and bottom[index+shift]==0:

choices+=1
return choices

def create_all_lists(m,N): #gives every possible configuration given m,N
#this function returns a list of lists of coordinate tuples
#each list inside the list corresponds to a possible state
#operates as a sort of decision tree to get to all possible states

big_lst=[]
configs=(2**N)*(m+1)**N
for i in range(0,configs):

big_lst.append([])
for site in range(1,N+1):

for mass in range(0,m+1):
chunk=int(configs/((m+1)**site)+0.5)
for index in range(0,chunk):

for rotations in range(0,(m+1)**(site-1)):
big_lst[index+mass*chunk+rotations*(m+1)*chunk].append((0,site-1,mass))

for site in range(1,N+1):
for mass_scale in range(0,2):

chunk=int(configs/(((m+1)**N)*(2**site)))
for index in range(0,chunk):

for rotations in range(0,((m+1)**N)*(2**(site-1))):
big_lst[index+mass_scale*chunk+rotations*2*chunk].append((1,site-1,mass_scale*m))

return big_lst

def check_choices(m,state):
#returns the number of choices a state has

N=state.shape[1]
top=state[0]
bottom=state[1]
choices=0

#top lattice
for j in range(0,N):

if top[j] !=0: #if particle in jth index

13

if j != 0: #if particle has a site to the left
if (top[j]<=top[j-1]) or (top[j-1]==0): #if left site is heavier or zero

if top[j-1]+top[j]==bottom[j-1]+bottom[j]: #if left subsytem is in equilibrium
if top[j-1]==0:

#if left site empty, can move all over or fission for energy
choices+=1+(energy_choices(state,j,-1)*(top[j]-1))

elif top[j-1]==top[j]:
#if left site equal, skip to avoid double counting choices
pass

else:
#we can fission/fusion so need energy_choices()
#that min() thing is the number of ways to put a+b objects into 2 ordered boxes with max capacity m (a,b < m)
choices+=(energy_choices(state,j,-1)*min(top[j]+top[j-1],2*m-top[j]-top[j-1]))

elif top[j]!=top[j-1]:
#if not in equilibrium and left site is heavier/zero, 1 choice
choices+=1

if j != N-1: #if a particle has a site to the right
if (top[j]<=top[j+1]) or (top[j+1]==0): #if right site is heavier, equal or zero

if top[j+1]+top[j]==bottom[j+1]+bottom[j]: #if right subsytem is in equilibrium
if top[j+1]==0:

#if right site empty, can move all over or fission for energy
choices+=1+(energy_choices(state,j,1)*(top[j]-1))

elif top[j+1]==top[j]:
#if right site equal
#same idea as else: but with a=b
choices+=(energy_choices(state,j,1)*min(2*top[j],2*m-2*top[j]))

else:
#same as previous else but for right
#isn't double counting since a<b or b<a (will only do this once for pairing)
choices+=(energy_choices(state,j,1)*min(top[j]+top[j+1],2*m-top[j]-top[j+1]))

elif top[j]!=top[j+1]:
#if not in equilibrium and right site is heavier/zero, 1 choice
choices+=1

#bottom lattice
for j in range(0,N):

if bottom[j] !=0: #if particle occupies site
if j!=0 and (((top[j]==m or top[j]==0) and (top[j-1]==m or top[j-1]==0)) or ((top[j-1]==top[j]) and 2*top[j]!=bottom[j])) and bottom[j-1]==0:

#if left site exists, and is open, and the bottom particle is allowed to move
choices+=1

if j!=N-1 and (((top[j]==m or top[j]==0) and (top[j+1]==m or top[j+1]==0)) or ((top[j+1]==top[j]) and 2*top[j]!=bottom[j])) and bottom[j+1]==0:
#if right site exists, and is open, and the bottom particle is allowed to move
choices+=1

return int(choices+0.5) #int to avoid float problems

def count_states(m,N):
#tallies up number of j-choice states as dictionary similar to so_2n.py
configs=create_all_lists(m,N)
states={}
for config in configs:

choices=check_choices(m,auto_state(m,N,config))
if choices in states:

states[choices]+=1
else:

states[choices]=1
return states

def print_states(states):
#prints count_states result in order
ordered_choices=sorted(states.keys())
for choice in ordered_choices:

print("{}:{}".format(choice,states[choice]))

14

	Introduction
	Background
	Generator Matrices and Probability in Markov Processes
	so2n as a Lie Algebra

	Main Results
	Analyzing the Generator Matrix from so2n
	Obtaining Gn
	Properties of Gn
	Expected Properties of the Markov Process from Gn

	The Particle System
	An Example: so4

	Expansion of the Particle System

	Appendix: Generator Matrix Python Code
	Appendix: Particle System Python Code

