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Goals

© Review relevant concepts from Markov processes and Lie
algebras.

@ Show the process used to start from a Casimir element of so05,
and arrive at a generator matrix.

© Describe expected properties of the Markov process given the
generator matrix.
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Markov Processes and Generator Matrices

A Markov process is a continuous-time physical process with a
discrete number of states where states jump to other states at
random times and the probabilities depend only on the present
state, not past states.

A generator matrix encodes the jump rates between states. It has
the properties:

@ Each row sums to 0.
o All diagonal entries are non-positive.

@ All off-diagonal entries are non-negative.

Proposition

Let Q be a generator matrix, and let gy, be the (x, y) entry of Q.
Let Ty be the holding time at state x. If gy # 0, then

P(XTX = y|X0 = X) = %
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A Simple Generator Matrix Example

-2 1 1
0 0 O
1 0 -1

Figure: Sample Markov Process
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Example: Symmetric Simple Exclusion Process (SSEP)

@ Introduced by Frank Spitzer (1970)
@ 2-site generator matrix derived from a Casimir element of sl;
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Figure: SSEP Configurations

@ Can be expanded to N sites
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505, as a Lie Algebra

502,(C) is the Lie algebra of matrices of the form:
{ (é‘ g) ‘A, B,C,DeC™" A=-DT BT =-B,CT = —c}

Let E;j be the 2n x 2n matrix with a 1 in the (/,) entry and 0
elsewhere.

© Hi=Eii— Entinti
© Xij=Ejj— Enijn+i
© Yij=Eintj— Ejnti
© Zjj=Enyij— Enyji

A Cartan-Weyl Basis of s02, consists of H; for all i < n and
Xij7)<jia Y,'J',Z,'j forall i <j < n.
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Procedure to Obtain p(Q)

e Dual Basis (Fulfills condition with respect to Killing form)
o Killing form B(F,S) = (2n—2)Tr(FS) is 1 if S is dual basis
counterpart of F, 0 for S is in dual basis but not counterpart

0H~>4 H
n14
° Xij = 73 4XJ,,X =" 4X
° Yij = — - 4ZU Zij = =g 4Yij

@ Casimir Element Q = ZA,-A’, where A; is from basis and A’

1
is counterpart in dual basis.
@ The p Representation

] FOI’ A € $092,, pc2n®c2n (A) = chn (A) ® /d2n + Id2n ® p(CZn (A)
o Example: pcan(Xi2) is @ 2n X 2n matrix, peangceen(Xi2) is a
4n? x 4n® matrix.

o Compute p(Q2) = _ peangcan (Al peangean (AY)
1
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Block Form of p(Q)

Lemma (Landry-Park)

The representation of the Casimir element p(Q), a 4n® x 4n?
matrix, can be written as a 2n x 2n matrix of blocks each of size

2n X 2n as:

Di Xo1 Xa1 -0 X 0 —Zip ~Ziz -+ —Zi,
X2 Dy Xsp -o0 Xno Z12 0 —Z3 - -2,
X1z X3 D3 -0 X3 Zi3 I3 0 - —Zz,
(Q) = 515 Xin Xon Xsn -+ Dn Zin Zon  Z3n v 0
4 2n—2 0 Y2 —Yiz -+ —Yin Dpy1 —Xi2 —Xiz -+ —Xip
Yo 0 Yoz -+ Y2, | —Xa1 Dp2 —Xaz o0 —Xpp
Yi3 Y23 0 - =Y3, —Xs1 —Xz2 Dpyz -0 =Xz,
Yl,n YZ n Y3 n 0 = —Xno X ce Dopy

where D; = (2n— 1)/ + H; and D, = (2n - 1)/ — H for i < n.
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From p(Q) to G,

p(Q2) is not yet a generator matrix, as its rows do not yet sum to 0.
We need to use a correction term C such that p(Q) — Cis a
generator matrix.

Procedure

@ Let C be the diagonal matrix with entries ¢; such that

i = p(Q)j.

o Negate rows of p(Q2) — C to force all diagonal elements to be
non-positive. Call this matrix G,,.

Note: Past research uses C = kI for some k € C, and then
conjugates with a diagonal matrix to arrive at a generator matrix.
In the case of s02,, this technique fails to arrive at a generator
matrix with finite entries if n > 2.
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Properties of G,

Lemma (Landry-Park)
The matrix G, is the generator of a Markov process.

Lemma (Landry-Park)
All non-zero off-diagonal entries of G, are equal.

First Properties of Markov Process:
e G, is 4n® x 4n°, which implies a Markov process with 4n°
states.
@ From past research on Lie algebras, Casimir representations
describe a particle system with two sites.
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Absorbing States

An absorbing state of a Markov process is a state that "absorbs,”
i.e. if the process lands there, it will never jump to another state.
This is represented in a generator matrix by a row of 0's.

Lemma (Landry-Park)

The Markov process with generator G, has 2n absorbing states.

-o—0 -o—e&
Figure: 2 Absorbing States in SSEP
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Maximal Choice Rows

Definition (Landry-Park)

A maximal choice row is a row in which no other rows have a
greater number of nonzero off-diagonal elements. The set of all
maximal choice rows is called the maximal choice set.

Lemma (Landry-Park)

The generator G, has 2n maximal choice rows, each of which have
2n — 2 non-zero off-diagonal entries.

Figure: 4 Maximum Choice States Figure: 6 Maximum Choice States
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Pairwise Rows and Pairwise States

Definition (Landry-Park)

A pairwise row is a row with exactly one nonzero off-diagonal
entry. If pairwise row r has its nonzero off-diagonal entry at
column s, and s is a pairwise row with nonzero off-diagonal entry
at column r, rows r and s are called pairwise states.

Lemma (Landry-Park)

Any row in G, is either an absorbing state, or a maximal choice
row, or a pairwise state.

— O O—e

Figure: 2 Pairwise States from SSEP
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Based on the properties we observe in G, a generator matrix
derived from a Casimir element in s05,, we expect the following
properties in the corresponding Markov process:

@ 4n? states total.
@ 2n absorbing states.

@ 2n maximum choice states that can each jump to 2n — 2
other maximum choice states.

@ The remaining states split up into pairs that jump back and
forth.
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Parallel SSEP

Definition (Landry-Park)

A Parallel SSEP with N sites is a system that has two separate
1-dimensional SSEPs with N > 2 sites each. Each site can either
be empty or have a particle on it, and while particles can interact
with neighboring sites on the same lattice, they cannot jump to
the other lattice. A Parallel SSEP with 2 sites will be referred to as
a Basic Parallel SSEP.

’

Type-1 Parallel SSEP is the simplest case of a Parallel SSEP; it is
a Parallel SSEP with only 1 type of particle.

Figure: A possible state of a Type-1 Basic Parallel SSEP

Mark Landry, Andrew Park Parallel SSEP and a Casimir Element of so5, 15 /27



Type-2 Basic Parallel SSEP

Consider a system similar to the Type-1 Basic Parallel SSEP where
we introduce a second type of particle, 1/2 the mass of the first
particle, to the upper lattice. This is the Type-2 Basic Parallel
SSEP and has the following properties:

© Heavier particles can not move as long as a lighter particle in
the system can move.

@ If the two lattices are equal by mass, then the upper lattice
allows fusion /fission which provides energy, possibly granting
the lower lattice a free concurrent move.

© Lighter particles have the “upper-class” property seen in other
SSEP variants.
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Type-2 Basic Parallel SSEP

Figure: The red particle will switch places with the black particle
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Type-m Basic Parallel SSEP

Consider a Basic Parallel SSEP where the lower lattice allows
particles of mass 1, and the upper lattice allows particles of mass
we{L m=1 11 We define the following properties:

© Mass Order Property: A particle can only move if no lighter
particles can move.

m7m7...’

@ Balance Property: A set of balanced states exists in which
the two lattices each have mass 1 and particles are able to
undergo fusion and fission, defined respectively as donating
mass to or taking mass from a neighboring site. These
mass-preserving processes allow a concurrent move in the
lower lattice.

© Class Property: A particle in a non-balanced state is able to
switch places with neighboring particles of higher mass.
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Type-m Basic Parallel SSEP

Definition (Landry-Park)

A Type-m Basic Parallel SSEP is a Basic Parallel SSEP where
the lower lattice allows particles of mass 1, the upper lattice allows
particles of mass w € {m 9 paaog ’"T_l, 1}, and the following
properties hold: Mass Order Property, Balance Property, and Class
Property.

Figure: A possible state of a Type-3 Basic Parallel SSEP with mass

12
values: 3 3,1
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The Connection

We return to the generator G, of a Markov process, and its
connection to our newly defined particle system:

Theorem (Landry-Park)

Let m = n— 1. The generator matrix of the Type-m Basic Parallel
SSEP is exactly Gp,.
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Lemma (Landry-Park)

A Type-m Basic Parallel SSEP has 4(m + 1)? states made up of:
@ 2(m+ 1) absorbing states
@ 2(m+ 1) maximum-choice states
o 4(m+ 1)? — 4(m+ 1) pairwise states

(a) Absorbing State (b) Max-choice State (c) Pairwise State

Figure: Different states of Type-3 Basic Parallel SSEP with mass values:
12

=51

33
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Expansion of the Particle System

The following formula takes L, the generator matrix for the SSEP
with 2 sites, and expands it to Ly, the generator matrix for the
SSEP with N sites:

N—-2

LN:E IQ - RIRJNSNRD -
jO_’—/ N——
= j N—j—2

This formula also holds for the generator of a Parallel SSEP! Note
that each lattice is expanded to N sites, so Ly gives 2N sites in
total for a Parallel SSEP.
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Definition (Landry-Park)

A subsystem of a Parallel SSEP with N sites is a subset of the
system such that it is a Basic Parallel SSEP. A Parallel SSEP with
N sites is made up of N — 1 overlapping subsystems which define
the local properties of the entire system.

(a) Subsystem 1 (b) Subsystem 2 (c) Entire System

Figure: How subsystems make up the entire system
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Expanded Type-m Parallel SSEP

Definition (Landry-Park)

A Type-m Parallel SSEP with N sites is a Parallel SSEP with N
sites such that every subsystem is a Type-m Basic Parallel SSEP.

@000

Figure: A possible state of a Type-3 Parallel SSEP with 5 sites

The total number of choices available to a state of a Type-m
Parallel SSEP with N sites is just the sum of the number of
choices of its subsystems.
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The Final Result

Theorem (Landry-Park)

Let L = G,, the generator of a Type-m Basic Parallel SSEP, and

let:
N—-1
In=) I®:- ®I8La|®: -8,
i=1 i—1 N—1—i

Ly is the generator of a Type-m Parallel SSEP with N sites.

The ith term of the summation corresponds directly to the ith
subsystem/!
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Thank you!

Thank you to:
Texas A&M University
Prof. Jeffrey Kuan
TA's Ola Sobieska and Zhengye Zhou
National Science Foundation (DMS-1757872)
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