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Neural Ideal

Definition

A neural code, C, is a set of codewords, which are binary strings
of length n. We also denote the codewords by the index of 1’s in
the string, e.g., 0110=23.

Definition

The neural ideal of a code is the ideal of the polynomial ring
F2[x1, . . . , xn] that consists of all polynomials whose zeros are
precisely the codewords in the code C .

JC =< χν | ν ∈ Fn
2 \ C >,

χν =
∏

i |νi=1

xi
∏

j |νj=0

(1 + xj)

Note: Fn
2 = {0, 1}n
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The canonical form of JC

Definition

A pseudo-monomial is a polynomial with the form

χ =
∏

i∈µ xi
∏

j∈τ (1 + xj) for µ, τ ⊂ {1, . . . , n}, where µ ∩ τ = ∅.

A pseudo-monomial χν1 is minimal in JC if no other
pseudo-monomial χν2 in JC divides χν1 .

Definition

The canonical form of JC is

CF (JC ) = {minimal pseudo–monomials of JC}

Fact: The canonical form generates the neural ideal.
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Proof for algebraic signature of an obstruction to closed
convexity

Definition

A receptive field Ui ⊂ Rd is the region of space that triggers the
firing of the i-th place cell in a group of n cells, indexed using the
set [n] = {1, . . . , n}

UiUk
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Pseudo-monomials and receptive field relationships

Some pseudo-monomials and the corresponding receptive field
relationships (Curto et al. [1])

xi1xi2xi3 =⇒ Ui1 ∩ Ui2 ∩ Ui3 = ∅,Ui1 ∩ Ui2 6= ∅,
Ui2 ∩ Ui3 6= ∅,Ui1 ∩ Ui3 6= ∅

xi1xi2(xi3 + 1) =⇒ Ui1 ∩ Ui2 ∩ Ui3 6= ∅
xi1(xi2 + 1)(xi3 + 1) =⇒ Ui1 ⊂ (Ui2 ∪ Ui3)

Notation: Ui1 ∩ Ui2 ∩ Ui3 = Ui1i2i3
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Algebraic signature of an obstruction to closed convexity

Definition

An algebraic signature for some property is a subset of an
algebraic set that encodes the property in question.

For example: C15 is a non-closed convex code (Goldrup and
Phillipson [2])

CF (JC15) = {(x5 + 1)(x2 + 1)x1, (x5 + 1)x4x1, (x5 + 1)x4(x3 + 1),

(x3 + 1)x2(x1 + 1), x4x2x1, x4(x3 + 1)x2,

x5x4x2, x4x3x1, x5x2(x1 + 1), x5(x4 + 1)(x1 + 1),

x3(x2 + 1)x1, (x4 + 1)x3(x2 + 1), x5x3x1,

x5x3x2, x5(x4 + 1)x3}
AS(C15) = {x1x3(x2 + 1), x2x5(x1 + 1), x3x5(x4 + 1), x5x3x1,

x5x3x2, x3(x4 + 1)(x2 + 1), x2(x1 + 1)(x3 + 1)}
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Theorem about algebraic signature of an obstruction to
closed convexity

Theorem

Let C be a code on n neurons. Let i , j , k, l ,m ∈ [n]. Suppose the
canonical form of the neural ideal of C has the following subset of
pseudo-monomials:

{xixk(xj + 1), xjxm(xi + 1), xkxm(xl + 1), xmxkxi ,

xmxkxj , xk(xl + 1)(xj + 1), xj(xi + 1)(xk + 1)}
Then, the code C is non-closed convex, and we refer to the set of
pseudo-monomials as the algebraic signature for this obstruction.
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Proof for algebraic signature of an obstruction to closed
convexity

Lemma (1)

Let C be a convex neural code. If
xixkxm, xixk(xj + 1), xjxm(xi + 1), xkxm(xl + 1) ∈ CF (JC ), then the
sets Uijk , Uijm, and Uklm are nonempty and disjoint and the points
yijk ∈ Uijk , yijm ∈ Uijm, and yklm ∈ Uklm are not colinear.

Uk

UiUm

UijkUklm

Uijm
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Proof for algebraic signature of an obstruction to closed
convexity

Lemma (2)

Let C be a neural code and Ui , Uj , and Uk be nonempty, convex
sets in Rd . If xj(xi + 1)(xk + 1) ∈ CF (JC ), then any line drawn
between a point xij ∈ Uij and a distinct point xijk ∈ Ujk passes
through the nonempty intersection Uijk .

UiUk

xijxjk Uijk
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Proof for algebraic signature of an obstruction to closed
convexity

Lemma (3)

Let C be a neural code with convex receptive sets Uijk and Uijm in
its realization. If xixkxm ∈ CF (JC ), then any line that passes
between a point in Uijk and Uijm must contain a point in
Uij \ (Uijk ∪ Uijm).

xijkxijm

Uij
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Proof for algebraic signature of an obstruction to closed
convexity

Using Lemmas 1,2, and 3, we build the following triangle.

xijk

xijm xklm

xij xjkl
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Proof for algebraic signature of an obstruction to closed
convexity

(xk + 1)xj(xi + 1) =⇒ Uj ⊂ (Ui ∪ Uk)

xijk

xijm xklm

xij xjklyijk
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Corollary to theorem

Corollary

If a code C satisfies the following

1 The code contains the codewords ij , ijk, ijm, jkl , klm

2 No codewords contain ikm or jkm

3 Every codeword that contains k also contains j or l

4 No codewords that contains j also contains i or k

then C is not closed covex.

Joseph Lent Algebraic signatures for a non-local obstruction and sunflowers



Sunflower codes (Jeffs [3])

Definition (Sunflower code)

Let n ≥ 2. Define the sunflower code, Sn ⊂ 2[2n+2]

([2n + 2] = {1, . . . , 2n + 2}), to be the combinatorial code that
consists of the following codewords:

1 ∅,
2 All codewords of the form σ(n + 1) for σ a nonempty proper

subset of [n],

3 n + 1 + j for 1 ≤ j ≤ n + 1,

4 (1 · · · (i − 1)(i + 1) · · · n)(n + 1)(n + 1 + i) for 1 ≤ i ≤ n,

5 the codeword 1 · · · n(n + 1)(2n + 2), and

6 the codeword (n + 2)(n + 3) · · · (2n + 2).

S3 = {∅, 5, 6, 7, 8, 14, 24, 124, 34, 134, 234,
2345, 1247, 1346, 12348, 5678}
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Sunflower codes (Jeffs [3])

Theorem

Let σ ∈ C . Let i , j , k ∈ σ. Then,

Ui ∩ Uj = Uj ∩ Uk = Ui ∩ Uk = Uijk 6= ∅~w�
xixj(xk + 1), xi (xj + 1)xk , (xi + 1)xjxk ∈ CF (JC )

Corollary (Part of AS(Sn))

For i , j , k ∈ {n + 2, n + 3, . . . , 2n + 2} ∈ Sn

xixj(xk + 1), xi (xj + 1)xk , (xi + 1)xjxk ∈ CF (JSn)

S3 = {∅, 5, 6, 7, 8, 14, 24, 124, 34, 134, 234,
2345, 1247, 1346, 12348, 5678}
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Sunflower codes (Jeffs [3])

Conjecture

The algebraic signature for the sunflower code Sn must have the
following properties.

1 {xixj(xk + 1), xi (xj + 1)xk , (xi + 1)xjxk} ⊂ AS(Sn) for
i , j , k ∈ {n + 2, n + 3, . . . , 2n + 2}

2 xi (xn+1 + 1) ∈ AS(Sn) for i ∈ [n] and
xn+1

∏
j∈[n](xj + 1) ∈ AS(Sn).

3 x1 · · · xn+1(x2n+2) ∈ AS(Sn)

4 xixj(xk + 1) for i ∈ {n + 2, . . . , 2n + 2},
j , k ∈ ([n] \ {i} ∪ {n + 1} ∪ {i})

5 xi
∏

j∈τ (xj + 1) 6∈ AS(Sn) for i ∈ {n + 2, . . . , 2n + 2} and
τ ⊂ [n + 1]

6 (x2n+2 + 1)xn · · · x1 ∈ AS(Sn)
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Sunflower codes (Jeffs [3])

Theorem (Closed convexity of sunflowers)

Although the sunflower codes are not open convex, they are closed
convex. The sunflower code S2 is closed convex in R2. The
sunflower code Sn, n ≥ 3, is closed convex in R3.

S2 = {∅, 4, 5, 6, 13, 23, 234, 135, 1236, 456}

U456

U4 U5U6

U1

U2

U3

(a)

U1236U234 U135

U456

U4 U5U6

U13U23

(b)

Figure: Receptive field setup (a) and realization (b) of S2
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Closed convexity of sunflowers.

The realization for n ≥ 3 is drawn as follows

1 Draw a (2n − 2)-sided, regular polygon.
This polygon is the receptive field for the codeword
1 · · · n(n + 1)(2n + 2).

2 Draw the circle that passes through the vertices of the
polygon.

The circle is Un+1.
The clopen subset of the circle outside of one of the edges of
the polygon corresponds to one of the nonempty proper
subsets of [n].

3 Pick a point in a plane parallel to the one in which the
polygon sits and let U2n+2 = conv{point, vertices}.

4 Draw a line segment from each subset of the circle
U1···(i−1)(i+1)(n+1) for 1 ≤ i ≤ n to the point from (3). This
line is Un+1+i .
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Sunflower codes (Jeffs [3])

234

34

13414

124

24

1234

Figure: Face of S3

S3 = {∅, 5, 6, 7, 8, 14, 24, 124, 34, 134, 234,

2345, 1247, 1346, 12348, 5678}
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Sunflower codes (Jeffs [3])

15 25

245

1245

345

2345

145

4535

235

1345

125

1235

135

12345

Figure: Face of S4 based on L28 from Curto et al. [4]

S4 = {∅, 6, 7, 8, 9, 10, 15, 25, 125, 35, 135, 235, 1235,

45, 145, 245, 1245, 345, 1345, 2345, 13457, 12359,

12458, 23456, 12345(10), 6789(10)}
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Thank you!
Mentors: Dr. Anne Shiu, Alex Ruys de Perez, Dr. Ola Sobieska
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