Algebraic signatures for a non-local obstruction and sunflowers

Joseph Lent

Texas A&M REU 2020

July 21, 2020

Joseph Lent Algebraic signatures for a non-local obstruction and sunflowers

Summary

- Review of Neural Codes and Neural Ideals
- Algebraic signature of non-local obstruction to non-closed convexity
- Proof of signature
- Sunflowers
- Part of the algebraic signature of sunflowers
- Closed realizations for sunflowers

Neural Ideal

Definition

A **neural code**, C, is a set of codewords, which are binary strings of length n. We also denote the codewords by the index of 1's in the string, e.g., 0110=23.

Definition

The **neural ideal of a code** is the ideal of the polynomial ring $\mathbb{F}_2[x_1, \ldots, x_n]$ that consists of all polynomials whose zeros are precisely the codewords in the code *C*.

$$J_C = <\chi_{\nu} \mid \nu \in \mathbb{F}_2^n \setminus C >,$$

$$\chi_{\nu} = \prod_{i \mid \nu_i = 1} x_i \prod_{j \mid \nu_j = 0} (1 + x_j)$$

Note: $\mathbb{F}_{2}^{n} = \{0, 1\}^{n}$

The canonical form of J_C

Definition

A pseudo-monomial is a polynomial with the form

$$\chi = \prod_{i \in \mu} x_i \prod_{j \in \tau} (1 + x_j)$$
 for $\mu, \tau \subset \{1, \dots, n\}$, where $\mu \cap \tau = \emptyset$.

A pseudo-monomial χ_{ν_1} is **minimal** in J_C if no other pseudo-monomial χ_{ν_2} in J_C divides χ_{ν_1} .

Definition

The **canonical form** of J_C is

 $CF(J_C) = \{minimal \text{ pseudo-monomials of } J_C\}$

Fact: The canonical form generates the neural ideal.

(人間) シスヨン スヨン ヨ

Definition

A **receptive field** $U_i \subset \mathbb{R}^d$ is the region of space that triggers the firing of the *i*-th place cell in a group of *n* cells, indexed using the set $[n] = \{1, ..., n\}$

Some pseudo-monomials and the corresponding receptive field relationships (Curto et al. [1])

$$egin{aligned} & x_{i_1}x_{i_2}x_{i_3} \implies U_{i_1}\cap U_{i_2}\cap U_{i_3}=\emptyset, \ U_{i_1}\cap U_{i_2}
eq \emptyset, \ U_{i_2}\cap U_{i_3}
eq \emptyset, \ U_{i_1}\cap U_{i_3}
eq \emptyset \ & x_{i_1}x_{i_2}(x_{i_3}+1) \implies U_{i_1}\cap U_{i_2}\cap U_{i_3}
eq \emptyset \ & x_{i_1}(x_{i_2}+1)(x_{i_3}+1) \implies U_{i_1}\subset (U_{i_2}\cup U_{i_3}) \end{aligned}$$

Notation:
$$U_{i_1} \cap U_{i_2} \cap U_{i_3} = U_{i_1 i_2 i_3}$$

Definition

An **algebraic signature** for some property is a subset of an algebraic set that encodes the property in question.

For example: C15 is a non-closed convex code (Goldrup and Phillipson [2])

$$CF(J_{C15}) = \{(x_5+1)(x_2+1)x_1, (x_5+1)x_4x_1, (x_5+1)x_4(x_3+1), \\(x_3+1)x_2(x_1+1), x_4x_2x_1, x_4(x_3+1)x_2, \\x_5x_4x_2, x_4x_3x_1, x_5x_2(x_1+1), x_5(x_4+1)(x_1+1), \\x_3(x_2+1)x_1, (x_4+1)x_3(x_2+1), x_5x_3x_1, \\x_5x_3x_2, x_5(x_4+1)x_3\}$$
$$AS(C15) = \{x_1x_3(x_2+1), x_2x_5(x_1+1), x_3x_5(x_4+1), x_5x_3x_1, \\x_5x_3x_2, x_3(x_4+1)(x_2+1), x_2(x_1+1)(x_3+1)\}$$

Theorem about algebraic signature of an obstruction to closed convexity

Theorem

Let C be a code on n neurons. Let $i, j, k, l, m \in [n]$. Suppose the canonical form of the neural ideal of C has the following subset of pseudo-monomials:

$$\{ x_i x_k (x_j + 1), x_j x_m (x_i + 1), x_k x_m (x_l + 1), x_m x_k x_i, x_m x_k x_j, x_k (x_l + 1) (x_j + 1), x_j (x_i + 1) (x_k + 1) \}$$

Then, the code C is non-closed convex, and we refer to the set of pseudo-monomials as the algebraic signature for this obstruction.

Lemma (1)

Let C be a convex neural code. If $x_i x_k x_m, x_i x_k (x_j + 1), x_j x_m (x_i + 1), x_k x_m (x_l + 1) \in CF(J_C)$, then the sets U_{ijk} , U_{ijm} , and U_{klm} are nonempty and disjoint and the points $y_{ijk} \in U_{ijk}$, $y_{ijm} \in U_{ijm}$, and $y_{klm} \in U_{klm}$ are not colinear.

• • = • • = •

Lemma (2)

Let C be a neural code and U_i , U_j , and U_k be nonempty, convex sets in \mathbb{R}^d . If $x_j(x_i + 1)(x_k + 1) \in CF(J_C)$, then any line drawn between a point $x_{ij} \in U_{ij}$ and a distinct point $x_{ijk} \in U_{jk}$ passes through the nonempty intersection U_{iik} .

伺 ト イヨ ト イヨ ト

Lemma (3)

Let C be a neural code with convex receptive sets U_{ijk} and U_{ijm} in its realization. If $x_i x_k x_m \in CF(J_C)$, then any line that passes between a point in U_{ijk} and U_{ijm} must contain a point in $U_{ij} \setminus (U_{ijk} \cup U_{ijm})$.

Using Lemmas 1,2, and 3, we build the following triangle.

$$(x_k+1)x_j(x_i+1) \implies U_j \subset (U_i \cup U_k)$$

Corollary to theorem

Corollary

If a code C satisfies the following

- The code contains the codewords ij, ijk, ijm, jkl, klm
- 2 No codewords contain ikm or jkm
- Severy codeword that contains k also contains j or l
- O No codewords that contains j also contains i or k

then C is not closed covex.

Definition (Sunflower code)

Let $n \ge 2$. Define the sunflower code, $S_n \subset 2^{[2n+2]}$ $([2n+2] = \{1, \ldots, 2n+2\})$, to be the combinatorial code that consists of the following codewords:

① ∅,

2 All codewords of the form $\sigma(n+1)$ for σ a nonempty proper subset of [n],

$$\ \, \textbf{\textit{o}} \ \, \textbf{\textit{n}}+1+j \ \, \textbf{for} \ \, 1\leq j\leq \textbf{\textit{n}}+1,$$

③
$$(1 \cdots (i-1)(i+1) \cdots n)(n+1)(n+1+i)$$
 for 1 ≤ *i* ≤ *n*,

- the codeword $1 \cdots n(n+1)(2n+2)$, and
- the codeword $(n+2)(n+3)\cdots(2n+2)$.

$$S_3 = \{ \emptyset, 5, 6, 7, 8, 14, 24, 124, 34, 134, 234, 2345, 1247, 1346, 12348, 5678 \}$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem

Let $\sigma \in C$. Let $i, j, k \in \sigma$. Then,

$$x_ix_j(x_k+1), x_i(x_j+1)x_k, (x_i+1)x_jx_k \in \mathit{CF}(J_C)$$

Corollary (Part of $AS(S_n)$)

For
$$i, j, k \in \{n + 2, n + 3, \dots, 2n + 2\} \in S_n$$

$$x_ix_j(x_k+1), x_i(x_j+1)x_k, (x_i+1)x_jx_k \in \mathit{CF}(J_{\mathcal{S}_n})$$

$$S_3 = \{ \emptyset, 5, 6, 7, 8, 14, 24, 124, 34, 134, 234, 2345, 1247, 1346, 12348, 5678 \}$$

▲御▶ ▲ 陸▶ ▲ 陸▶

3

Conjecture

The algebraic signature for the sunflower code S_n must have the following properties.

• {
$$x_i x_j (x_k + 1), x_i (x_j + 1) x_k, (x_i + 1) x_j x_k$$
} $\subset AS(S_n)$ for
 $i, j, k \in \{n + 2, n + 3, ..., 2n + 2\}$

②
$$x_i(x_{n+1}+1) \in AS(S_n)$$
 for $i \in [n]$ and $x_{n+1} \prod_{j \in [n]} (x_j+1) \in AS(S_n)$.

•
$$x_i x_j (x_k + 1)$$
 for $i \in \{n + 2, ..., 2n + 2\}$,
 $j, k \in ([n] \setminus \{i\} \cup \{n + 1\} \cup \{i\})$

• $x_i \prod_{j \in \tau} (x_j + 1) \notin AS(S_n)$ for $i \in \{n + 2, ..., 2n + 2\}$ and $\tau \subset [n + 1]$

$$(x_{2n+2}+1)x_n\cdots x_1 \in AS(S_n)$$

Theorem (Closed convexity of sunflowers)

Although the sunflower codes are not open convex, they are closed convex. The sunflower code S_2 is closed convex in \mathbb{R}^2 . The sunflower code S_n , $n \ge 3$, is closed convex in \mathbb{R}^3 .

 $S_2 = \{\emptyset, 4, 5, 6, 13, 23, 234, 135, 1236, 456\}$

Closed convexity of sunflowers.

The realization for $n \ge 3$ is drawn as follows

- Draw a (2ⁿ 2)-sided, regular polygon. This polygon is the receptive field for the codeword 1 ··· n(n+1)(2n+2).
- Oraw the circle that passes through the vertices of the polygon.

The circle is U_{n+1} .

The clopen subset of the circle outside of one of the edges of the polygon corresponds to one of the nonempty proper subsets of [n].

- Pick a point in a plane parallel to the one in which the polygon sits and let U_{2n+2} = conv{point, vertices}.
- Oraw a line segment from each subset of the circle U_{1…(i-1)(i+1)(n+1)} for 1 ≤ i ≤ n to the point from (3). This line is U_{n+1+i}.

Joseph Lent Algebraic signatures for a non-local obstruction and sunflowers

References

- Curto 2018 C. Curto, E. Gross, J. Jeffries, K. Morrison, Z. Rosen, A. Shiu, N. Youngs, *Algebraic signatures of convex and non-convex codes*, Journal of Pure and Applied Algebra, 223 (2018), no. 9, 3919-3940.
- Goldrup 2019 S. A. Goldrup, K. Phillipson, *Classification of open and closed convex codes on five neurons*, Advances in Appl. Math., **112** (2020).
- Amzi R. Amzi Jeffs, Sunflowers of convex open sets, Advances in Applied Mathematics, 111 2019.
- Curto 2019 C. Curto, E. Gross, J. Jeffries, K. Morrison, M. Omark, Z. Rosen, A. Shiu, N. Youngs, *What makes a neural code convex?*, Journal of Appl. Algebra Geometry, **1** (2020), 222-238.

b 4 3 b 4 3 b

Thank you!

Mentors: Dr. Anne Shiu, Alex Ruys de Perez, Dr. Ola Sobieska

Joseph Lent Algebraic signatures for a non-local obstruction and sunflowers