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Abstract

We construct an explicit central element of the quantum groups Uq(so6) and Uq(so8)
using a method from [2] and provide progress towards the general case Uq(so2n) by
studying the structure of the dual elements under a q-deformed pairing.

1 Introduction

The symmetric simple exclusion process (SSEP) is a continuous-time Markov process,
meaning it can be entirely characterized by a generator matrix encoding the jump rates from
each state to each other state. This generator matrix can be obtained from the quadratic
Casimir element of the Lie algebra sl2, which is a distinguished element of the corresponding
universal enveloping algebra U(sl2).

There are two natural extensions of this construction. One is to generalize the parti-
cle system itself by introducing asymmetry; the asymmetric simple exclusion process
(ASEP) is constructed by a similar process but using the Drinfeld–Jimbo quantum group
Uq(sl2). The other is to construct generator matrices using other Lie algebras, since the
differences in algebraic structure will lead to different properties for the generator matrices.

This paper explores a combination of the two ideas by analyzing the Drinfeld-Jimbo
quantum group Uq(so2n). Previous work [2] has provided a formula for a q-analog of the
Casimir element, and we apply these methods here for the simple cases n = 3, 4 and develop
ideas for general n. In Section 2, we review the algebraic definitions and relevant construc-
tions for the rest of the paper, and we explain the procedure for applying the formula itself
in Section 3. In Section 4, we present the explicit formulas for these central elements and
provide some code aiding us in computations. Finally, Section 5 describes some strategies
for computing dual elements and suggests a potential method for further research.

2 Background

This section describes the main objects of study for this paper and explains Lemma 3.1 of [2],
the central formula of this approach.

Definition 1. The Lie algebra so2n(C) is the set of 2n× 2n matrices{[
A B
C D

]
: A = −DT , BT = −B,CT = −C

}
,

where A,B,C,D ∈ Cn×n.
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Below, we list a few key algebraic properties associated to this Lie algebra:

• The rank of the Lie algebra so2n is n. Specifically, if Li denotes the linear operator
taking a matrix M to its diagonal entry Mi,i, then the set of roots is {Li − Lj : 1 ≤
i 6= j ≤ n}, and the positive simple roots are αi = Li − Li+1 for 1 ≤ i ≤ n − 1 and
αn = Ln−1 + Ln.

• The Cartan subalgebra h of so2n is the subalgebra of diagonal matrices spanned (as
a vector space) by the matrices Hn = En−1,n−1 + En,n + E2n−1,2n−1 + E2n,2n and, for
1 ≤ i ≤ n− 1),

Hi = Ei,i − Ei+1,i+1 − En+i,n+i + En+i+1,n+i+1,

where Ea,b denotes the matrix with a 1 in the (a, b)th entry and 0s elsewhere. In other
words, Hi takes its first n diagonal entries from the ith positive simple root and then
flips the signs for the next n entries (so that A = −DT ).

• The corresponding Dynkin diagram for so2n is Dn. In particular, all nonzero off-
diagonal entries of the Cartan matrix are −1:

aij =


2 i = j,

−1 {i, j} = {n− 2, n} or {k, k + 1}, 1 ≤ k ≤ n− 2,

0 otherwise.

• In the fundamental representation of so2n, all elements of the Lie algebra act on a
2n-dimensional vector space. Certain elements correspond to simple roots and will be
referred to later in the paper: for all 1 ≤ i ≤ n− 1, we have

Ei = Ei,i+1 − En+i+1,n+i, En = En−1,2n − En,2n−1,

Fi = Ei+1,i − En+i,n+i+1, Fn = E2n−1,n − E2n,n−1.

The weights of the fundamental representation are ±Li (for 1 ≤ i ≤ n).

Definition 2. The quantum group Uq(so2n) is the algebra generated by {Ei, Fi, qHi : 1 ≤
i ≤ n}. These generators satisfy the relations

[Ei, Fi] =
qHi − q−Hi
q − q−1

, qHiEj = q(αi,αj)Ejq
Hi , qHiFj = q−(αi,αj)Fjq

Hi ,

as well as the Serre relation for all (i, j) with aij = −1 in the Cartan matrix

E2
iEj + EjE

2
i = (1 + q)EiEjEi, F 2

i Fj + FjF
2
i = (1 + q)FiFjFi,

and all other pairs of elements commuting. Finally, the coproducts of the generators are

∆(Ei) = Ei ⊗ 1 + qHi ⊗ Ei, ∆(Fi) = 1⊗ Fi + Fi ⊗ q−Hi , ∆(qHi) = qHi ⊗ qHi .

A general definition for the quantum group of a Lie algebra g can be found in [1]; this
quantum group serves as a deformation of the ordinary universal enveloping algebra U(g).

Constructing a nondegenerate bilinear form often allows us to study relationships be-
tween elements of a vector space, and Chapter 6 of [1] introduces a similar idea. Recall that
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the Borel subalgebras b± are the Lie subalgebras generated by {Ei, Hi} and {Fi, Hi},
respectively. Let Uq(b±) denote the corresponding subalgebras of the quantum group gen-
erated by the Borel subalgebras (replacing Hi with qHi), and let 〈 , 〉 be the bilinear pairing
Uq(b−)× Uq(b+)→ Q(q) such that for any linear combinations α, β of the αis, we have

〈qHα , qHβ〉 = q−(α·β) and 〈Fi, Ej〉 = −δij(q − q−1)−1,

and all other pairings between generators are zero. Furthermore, the pairing can be computed
for products via

〈y, xx′〉 = 〈∆(y), x′ ⊗ x〉, 〈yy′, x〉 = 〈y ⊗ y′,∆(x)〉,

where the coproduct ∆ satisfies ∆(ab) = ∆(a)∆(b) and is explicitly defined for generators
in the definition above. (Here, 〈x1 ⊗ x2, y1 ⊗ y2〉 is defined to be 〈x1, y1〉〈x2, y2〉.) From this
construction, we can obtain the following result, which is Lemma 3.1 of [2] and is based on
results from Chapter 6 of [1]:

Theorem 3. For each weight µ of the fundamental representation of a Lie algebra g, let vµ
be a vector in the weight space. Suppose q is not a root of unity, and 2µ is always in the root
lattice of g. Let eµλ and fλµ be products of Eis and Fis in U(g), respectively, such that eµλ
sends vλ to vµ and fλµ sends vµ to vλ. If e∗µλ and f ∗µλ are the corresponding dual elements
under the above pairing, and ρ is half the sum of the positive roots of g, then∑

µ

q(−2ρ,µ)qH−2µ +
∑
µ>λ

q(µ−λ,µ)q(−2ρ,µ)e∗µλq
H−µ−λf ∗λµ

is a central element of the quantum group Uq(g).

The main goal of this paper is to apply this result to the quantum group Uq(so2n).

3 Computing the individual terms

This section describes each of the components of Theorem 3 and efforts towards computing
them explicitly. All results from here concern only so2n.

First of all, we will take q to be a real number different from 1, so q is not a root of unity.
In addition, 2µ = ±2Li is always in the root lattice, because all of ±Li±Lj are roots. Thus,
the conditions of the theorem are satisfied.

Our next step is to establish an ordering for the weight spaces to discern when µ > λ
holds. Since the Ei and Fi operators serve as raising and lowering operators, and the sum
of the positive roots is∑

i 6=j

(Li + Lj) +
∑
i<j

(Li − Lj) = (2n− 2)L1 + (2n− 4)L2 + · · ·+ Ln−1,

a natural ordering of the weights is

L1 > · · · > Ln−1 > Ln = −Ln > −Ln−1 > · · · > −L1.

Lemma 4. The weight µ can be reached from a weight λ by a product of Eis, and the weight
λ can be reached from µ by a product of Fis, if and only if µ > λ under the above ordering.
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Proof. Define v1, · · · , v2n to be the vectors in the weight spaces L1, · · · , Ln,−Ln, · · · ,−L1

with only a single nonzero entry of 1. (Specifically, vi has a 1 in the ith spot for 1 ≤ i ≤ n
and a 1 in the (3n+ 1− i)th spot for n+ 1 ≤ i ≤ 2n.) The action of the Eis and Fis can be
described explicitly based on their matrix counterparts in the fundamental representation,
defined earlier: for all 1 ≤ i ≤ n− 1,

Eivj =


vi j = i+ 1,

−v2n−i j = 2n+ 1− i,
0 otherwise,

meaning that the first (n− 1) E operators “move us up one weight space,” and

Envj =


vn−1 j = n+ 1,

−vn j = n+ 2,

0 otherwise.

Below is a schematic diagram for the weight spaces, which resembles the Dynkin diagram
Dn mirrored over itself:

vn

vn+1

vn+2vn−1 v2n−1v2 v2nv1 · · · · · ·E1 −E1

En−1

En

−En

−En−1

The result can now be directly verified for the Eis by inspection of the diagram (the
ordering goes left-to-right, and the Eis always move us left in the diagram). The proof for
Fis follows similarly.

Since En−1 and En commute in so2n, and so do Fn−1 and Fn, taking the “top path” or
the “bottom path” in the diagram above in fact corresponds to applying the same element
of U(g). This means that there is in fact a unique product of Es or F s (up to scalars)
that takes any vi to any vj whenever j can be reached from i, and this means that we have(
2n
2

)
− 1 total ordered pairs (µ, λ) in the second sum of Theorem 3.

Now that we know how to find the elements eµλ and fλµ, we can begin to calculate the
quantities in the actual sum. Computing q(µ−λ,µ) and q(−2ρ,µ) is relatively simple, because µ
always consists of a single term of the form ±Li:

q(µ−λ,µ) = q(µ,µ)−(λ,µ) =


q2 λ = −µ,
1 λ = µ,

q otherwise,

q(−2ρ,µ) =

{
q2n−2i µ = Li,

q2i−2n µ = −Li.

Computing the others requires more casework. To find qH−2µ and qH−µ−λ , we need to write
the exponents as linear integer combinations of the His. We present the general argument
here and also show explicit examples later in the paper.

• To compute qH−2µ when µ = ±Li, we first find that (with some abuse of notation)

H−2Ln = H−(Ln−1−Ln)+(Ln−1+Ln) = Hn−1 −Hn ,
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and then use a telescoping sum: since

H−2Li −H−2Ln =
n−1∑
j=i

(−2Lj + 2Lj+1) = −2
n−1∑
j=i

Hj,

we can rearrange and substitute to obtain

H−2Li = Hn−1 −Hn − 2
n−1∑
j=i

Hj

for any 1 ≤ i ≤ n− 1. This gives us the answer for µ = +Li, and we simply negate the
expressions for the case µ = −Li. (For example, n = 3, µ = L2 yieldsH−2µ = −H2−H3,
so µ = −L2 yields H−2µ = H2 +H3.)

• A similar telescoping sum works when µ > λ and we want to find qH−µ−λ . (Such
exponents always look like H±Li±Lj for i 6= j.) First, note that when i < j,

HLi−Lj =

j−1∑
k=i

HLk−Lk+1
=

j−1∑
k=i

Hk ,

and the i > j case follows by negating both sides. This then allows us to find any
H±Li±Lj by subtracting or adding H2Li and H2Lj appropriately, both of which have
been computed in the previous case.

We now turn our attention to computing eµλ, fλµ, and their dual elements. Since all eµλ
and fλµs are products of Eis and Fis, respectively, the dual elements e∗µλ and f ∗λµ will be
products of Fis and Eis. The next result serves to characterize these elements, and it also
explains more explicitly how the above bilinear pairing is calculated.

Lemma 5. The value of 〈Fx1Fx2 · · ·Fxm , Ey1Ey2 · · ·Eyn〉 is only nonzero if (x1, · · · , xm) and
(y1, · · · , yn) are permutations of each other (in particular, n = m), in which case it evaluates
to (q − q−1)−n times an element of the ring Z[q, q−1].

Proof. We proceed by induction on n. The base case n = 1 can be verified using the rule
〈yy′, x〉 = 〈y ⊗ y′,∆(x)〉 and the fact that 1 and qHi both pair to 0 with any Fi or product
of Fis. Then 〈Fi, Ej〉 is always equal to −δij(q − q−1)−1, which proves the remainder of the
claim.

For the inductive step, using the coproduct relation, the above pairing evaluates to〈
n∏
i=1

(
1⊗ Fxi + Fxi ⊗ q−Hxi

)
, Ey2 · · ·Eyn ⊗ Ey1

〉
.

By the inductive hypothesis, the only way this pairing is nonzero is if (n−1) of the terms on
the left are of the boxed type (so that there are exactly (n− 1) F s to pair with the (n− 1)
Es in Ey2 · · ·Eyn). In addition, to yield a nonzero result, the remaining term (of the form
(1 ⊗ Fxi)) must have the same index as Ey1 . Thus, we’ve proved the first claim, and this
expression evaluates to∑

i:xi=y1

〈Fx1 · · · F̂xi · · ·Fxn , Ey2 · · ·Eyn〉〈q−Hx1 · · ·Fxi · · · q−Hxn , Ey1〉,
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where the hat means that Fxi is omitted. By the inductive hypothesis again, the first pairing
here is always (−(q − q−1)−1)n−1 times an element of Z[q, q−1], and the second pairing is
(moving the F to the front)

〈q−Hx1 · · ·Fxi · · · q−Hxn , Ey1〉 = q(αxi ,αx1+···+αxi−1 )〈Fxiq−Hx1 · · · ˆq−Hxi · · · q−Hxn , Ey1〉

by the commutativity relations of the quantum group. Now using the coproduct relation
again on this final pairing and substituting shows that it is always −(q− q−1)−1, so we have
the right power of (q − q−1), as desired.

Now, computing the dual elements can be done as follows. For a given set of indices
(x1, · · · , xn), all elements of the form e′ = Eσ(x1) · · ·Eσ(xn) (for a permutation of the indices σ)
have nonzero pairing only with elements of the form f ′ = Fτ(x1) · · ·Fτ(xn) (for a permutation
τ). However, some of these elements may be identical or linearly dependent (due to the
relations of the quantum group). Thus, pick {e1, · · · , em} and {f1, · · · , fm} to be (linear)
bases of the spaces of possible e′s and f ′s, and let M be the matrix such that Mij = 〈ei, fj〉.
Results from Chapter 6 of [1] show that this pairing is nondegenerate, so M must be an
invertible matrix. The rows of M−1 then tell us the correct Z[q, q−1]-combinations to take
for the dual element.

Example 6. Take n = 4. If we wish to find the dual element for E2E3, first note that E2E3

and E3E2 both have nonzero pairing with F2F3 and F3F2, and none of these elements have a
nonzero pairing with anything else. Taking the bases to be {E2E3, E3E2}, {F2F3, F3F2}, we
evaluate the pairings to find

M = (q − q−1)−2
[

1 1/q
1/q 1

]
=⇒ M−1 = (q − q−1)2 1

q − q−1

[
q −1
−1 q

]
.

Thus, reading off the first row, E2E3 has dual element (q − q−1)(qF2F3 − F3F2).

4 The special cases n = 3 and n = 4

This section gives the explicit form of the distinguished central element from Theorem 3
for the cases n = 3 and n = 4 in terms of the generators Ei, Fi, q

Hi . (We do not present
n = 2 here because so4 ∼= sl2⊕ sl2 is a degenerate case. While so6 ∼= sl4, the central element
presented here is still new.)

Computing the bases {e1, · · · , em} described above, as well as many of the dual elements,
was done using Python code. We have included the code in Appendix A at the end of this
report, as the same algorithm can be applied to other Lie algebras beyond so2n.

To make the expression more readable, we adopt some shortcuts: set r = q − 1
q
, and let

Ex1x2···xn denote Ex1Ex2 · · ·Exn (and similar for F s). (For example, r2E21F3 would denote
(q − 1

q
)2E2E1F3.)
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Theorem 7. The following element of the quantum group Uq(so6) is central:

q−4−2H1−H2−H3 + q−2−H2−H3 + qH2−H3 + qH3−H2 + q2+H2+H3 + q4+2H1+H2+H3 + r2

q3F1q
−H1−H2−H3E1

+ r2

q F2q
−H3E2 − r2

q F3q
−H2E3 + r2qF2q

H3E2 − r2qF3q
H2E3 + r2q3F1q

H1+H2+H3E1

+ r2

q3 (qF12 − F21)q
−H1−H3(qE21 − E12)− r2

q3 (qF13 − F31)q
−H1−H2(qE31 − E13)

+r2q(qF21 − F12)q
H1+H3(qE12 − E21)− r2q(qF31 − F13)q

H1+H2(qE13 − E31)

− r2

q3 (q
2F123 − qF213 − qF312 + F231)q

−H1(q2E231 − qE312 − qE213 + E123)

− r2

q (q
2F231 − qF312 − qF213 + F123)q

H1(q2E123 − qE213 − qE312 + E231)

− r4

q2 ((q
2 + 1)F1231 − qF1312 − qF2131)((q

2 + 1)E1231 − qE1312 − qE2131)

−r4F2F3E2E3.

This element acts as q6 + q2 + 2 + q−2 + q−6 times the identity matrix in the fundamental
representation of so6.

The result for n = 4 looks similar but is much longer, and we have left the full expression
of certain terms, labeled Ai , to Appendix B. Those elements have been boxed for easy
reference. In addition, for this element, the terms from the sum over µ are included first,
and then all subsequent sums are included in order of µ and then λ (for example, the first
term is (µ, λ) = (L1, L2), and the last term is (µ, λ) = (−L2, L1)) for easy reference.

Theorem 8. The following element of the quantum group Uq(so8) is central:

q−6−2H1−2H2−H3−H4 + q−4−2H2−H3−H4 + q−2−H3−H4 + qH3−H4

+qH4−H3 + q2+H3+H4 + q4+2H2+H3+H4 + q6+2H1+2H2+H3+H4

+ r2

q5F1q
−H1−2H2−H3−H4E1 +

r2

q5 (qF12 − F21)q
−H1−H2−H3−H4(qE21 − E12)

+ r2

q5 (q
2F123 − qF132 − qF213 + F321)q

−H1−H2−H4(q2E321 − qE213 − qE132 + E123)

− r2

q5 (q
2F124 − qF142 − qF241 + F421q

−H1−H2−H3(q2E421 − qE241 − qE142 + E124)

− r2

q5 A1 q−H1−H2 A4 − r2

q5 A5 q−H1 A8 − r4

q4 A9 A10

+ r2

q3F2q
−H2−H3−H4E2 +

r2

q3 (qF23 − F32)q
−H2−H4(qE32 − E23)− r2

q3 (qF24 − F42)q
−H2−H3(qE42 − E24)

− r2

q3 (q
2F234 − qF324 − qF423 + F432)q

−H2(q2E432 − qE324 − qE423 + E234)

− r4

q2 ((q
2 + 1)F2342 − qF3242 − qF2423)((q

2 + 1)E2342 − qE3242 − qE2423)

− r2

q3 A7 qH1 A6 + r2

q F3q
−H4E3 − r2

q F4q
−H3E4

−r4F3F4E4E3 − r2

q (q
2F432 − qF324 − qF423 + F234)q

H2(q2E234 − qE324 − qE423 + E432)

− r2

q A3 qH1+H2 A2 − r2qF4q
H3E4 − r2q(qF42 − F24)q

H2+H3(qE24 − E42)

−r2q(q2F421 − qF241 − qF142 + F124)q
H1+H2+H3(q2E124 − qE142 − qE241 + E421)

+r2qF3q
H4E3 + r2q(qF32 − F32)q

H2+H4(qE23 − E32)

+r2q(q2F321 − qF213 − qF132 + F123)q
H1+H2+H4(q2E123 − qE132 − qE213 + E321)

+r2q3F2q
H2+H3+H4E2 + r2q3(qF21 − F12)q

H1+H2+H3+H4(qE12 − E21) + r2q5F1q
H1+2H2+H3+H4E1.

This element acts as q8 + q4 + q2 + 2 + q−2 + q−4 + q−8 times the identity matrix in the
fundamental representation of so8.
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5 Progress on the dual elements

We now turn our attention to the general case Uq(so2n). Since we have already written out
the expressions for all terms that are powers of q or products of qHi , it remains to find an
explicit expression for the dual elements. Because we know the structure of the weight spaces
and of the raising and lowering operators, we only need to find the dual elements for certain
products of Eis and Fis. In particular, eµλ and fλµ only include each index at most twice,
and when the indices appear twice, the element must be of the form

±(Ei · · ·En−2)En−1En(En−2 · · ·Ej)

(or Es replaced with F s, respectively), where the parenthetical expressions can each also
have zero terms.

All explicit progress presented so far has been accomplished using brute force: to cal-
culate the dual elements that have a set of indices (x1, · · · , xn), we have first found some
basis of elements with those indices and explicitly calculated M and M−1. However, this
quickly becomes computationally infeasible, and we demonstrate that there may be a cleaner
approach to find the answers in general. First, we explain how to compute the dual element
for an element like E3E4E5 · · ·E10, where the indices are consecutive but non-repeating:

Proposition 9. Suppose each index only shows up once in an element of eµλ or fλµ. Then
the matrix M−1 can be inductively computed by tensoring the inverse matrix from a smaller

set of indices repeatedly with

[
q −1
−1 q

]
.

Proof. We assume we are working with eµλs without loss of generality. The base cases are
when there are 1 or 2 generators, which are computed directly: the dual element of Ei is
−(q− q−1)Fi, and the dual element of EiEj is either −(q− q−1)FiFj if Ei and Ej commute,
or it is of the form in Example 6 above.

For the inductive step, let the set of indices that appear be (x1, · · · , xm), ordered in
nondecreasing order. If x1 ≤ x2 − 2, then the only indices must be (n − 2, n), covered in
the base case. (There is no other case in which two Eis on the diagram of Lemma 4 are
adjacent.) Otherwise, x1 = x2 − 1, which means either the indices are (n − 2, n − 1, n),
which is also easily computed directly, or that x1 commutes with everything except x2 and
the Serre relation is satisfied for indices (x1, x2). Notably, this means Ex1Ex2 and Ex2Ex1
are linearly independent.

Suppose we have a basis e = {e1, · · · , ek} for the set of indices (x2, · · · , xm). Then

e′ = {Ex1e1, · · · , Ex1ek, e1Ex1 , · · · , ekEx1}

is a valid basis for the set of indices (x1, · · · , xn). This is because Ex1 does not commute
only with Ex2 , so it can either be moved to the beginning or end of any element with these
indices. This basis is linearly independent, and we can verify this by computing that the
new matrix of pairings is the tensor product is

M ′ = M ⊗−(q − q−1)−1
[

1 1/q
1/q 1

]
,

so the inverse matrix is just

(M ′)−1 = M−1 ⊗−(q − q−1) 1

q − q−1

[
q −1
1 q

]
= M−1 ⊗

[
q −1
−1 q

]
,

8



as desired.

Corollary 10. In Uq(so2n), the dimension of the space of Eis with indices a permutation of
(a, a+ 1, · · · , a+m) (with 1 ≤ a and a+m ≤ n) is always a power of 2.

Proof. Tensoring with a 2 × 2 matrix multiplies the matrix dimension by 2, and all base
cases in the above example either have dimension 1 (a single index or (n − 1, n)), 2 (any
other pair (i, j)), or 4 (the indices (n− 2, n− 1, n)), which are all powers of 2.

Example 11. Again, take n = 4. We know that the dual element for E2E3 can be computed
from the matrix

M−1 = (q − q−1)
[
q −1
−1 q

]
using the basis {E2E3, E3E2} and similar for F s. Following the above proposition, a basis
for the indices (1, 2, 3) is then {E1E2E3, E1E3E2, E2E3E1, E3E2E1} (and similar for F ’s),
which corresponds to a matrix of

(M ′)−1 = (q − q−1)
[
q −1
−1 q

]
⊗
[
q −1
−1 q

]
= (q − q−1)


q2 −q −q 1
−q q2 1 −q
−q 1 q2 −q
1 −q −q q2

 .
Thus, the dual element of E1E2E3 in so8 is

(q − q−1)(q2E1E2E3 − qE1E3E2 − qE2E3E1 + E3E2E1).

The above procedure allows us to construct all elements that are restricted to the left
or right half of the diagram from Lemma 4. However, it does not directly generalize to the
case where repeated indices may be present, because there are not always an equal number
of ways to “build up our basis.” For instance, one basis of e′s for the index set (2, 2, 3, 4) for
n = 4 is

{E2E2E3E4, E3E2E2E4, E3E4E2E2, E4E2E2E3, E2E4E3E2}.

From here, we can add E1 to the element E2E4E3E2 to add three new elements to our basis
(depending only on the relative position of E1 and E2), but we cannot do so to E2E2E3E4

because the three resulting elements are linearly dependent by our Serre relation. Neverthe-
less, the result of Corollary 10, combined with the fact that the dimensions for (1, 1, 2, 2, 3, 4)
and (1, 2, 2, 3, 4) in n = 4 are both multiples of the dimension for (2, 2, 3, 4) – the three di-
mensions are 15, 20, and 5, respectively – indicates that there may be more structure in the
construction of the basis when adding a new index to a general set (x1, · · · , xm).

Conjecture 12. Suppose the index x1−1 is being added to a set of indices S = (x1, · · · , xm)
of dimension d, where x1 ≤ · · · ≤ xm. Further assume that x1 ≤ n−2, so that Ex1−1 and Ex1
do not commute, but Ex1−1 commutes with all other elements. We know that if x1 appears
only once in S and we add (x1 − 1) once, the dimension becomes 2d.

• If x1 appears twice and we add (x1 − 1) once, the dimension becomes 3d.

• If x1 appears twice and we add (x1 − 1) twice, the dimension becomes 4d.

9



Additionally, let M be a pairing matrix for a certain choice of basis for S. Then there exist
a 3× 3 matrix M1 and a 4× 4 matrix M2, as well as a natural choice of basis for the index
set, such that the new pairing matrix M ′ is M ⊗M1 in the first case and M ⊗M2 in the
second case.

If this conjecture is found to be true, it will provide the dimensions for all sets of in-
dices corresponding to valid elements eµλ and fλµ in U(so2n), as well as a natural way to
inductively compute all dual elements. For example, the dimension of the space for indices
(1, 2, 2, 3, 3, 4, 5) in n = 5 would then be 5 · 4 · 3 = 60, because (3, 3, 4, 5) has dimension 5
(analogous to (1, 1, 2, 3) in n = 3), adding the 2s gives a factor of 4, and adding the 1 gives
a factor of 3. However, computing the dual elements explicitly would still require a way
to make a 3–to–1 and 4–to–1 correspondence of elements when adding the index (x1 − 1),
respectively, much like the 2-to-1 correspondence from Proposition 9.
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Appendix A: Python code

The code below implements many of the calculations described in the paper, particularly in
Sections 3 and 4. Here is a summary of the main functions:

• The pair function takes in two lists of indices and outputs the result of the q-pairing,
except without the (q − q)−1 factors. (For example, an output of [0,−2] corresponds

to
(

1 + 1
q2

)
times some power of −(q − q−1).

• The mat and dual functions take a basis of e′s (and their respetcive f ′s) as described
in Section 3, and they output M and M−1, respectively.

• The result function computes a basis of e′s or f ′s by enumerating a list of all possible
permutations, using reduce to remove duplicates due to commuting elements, and
using perm to confirm that the pairing matrix stays nonsingular.

The code runs down the left column completely before continuing in the right column.

from sympy import *

import itertools

from collections import deque

n = 4

var(’q’)

def a(i, j): # Cartan matrix lookup

if (i == j):

return 2

if (abs(i-j) == 1 and max(i, j) <= n-1):

return -1

if (i == n-2 and j == n or i == n and j == n-2):

return -1

return 0

def pair(list1, list2):

ret = []

if(len(list1) != len(list2)):

return []

if(len(list1) == 1):

if(list1[0] == list2[0]):

return [0]

else:

return []

first = list2[0]

for i in range(len(list1)):

if(list1[i] == first):

inductive_list1 = list1.copy()

inductive_list1.pop(i)

inductive_list2 = list2.copy()

inductive_list2.pop(0)

ih = pair(inductive_list1, inductive_list2)

prefactors = 0

for j in range(i):

prefactors += a(list1[j], list1[i])

for j in range(len(ih)):

ih[j] += prefactors

10



ret.extend(ih)

return ret

def mat(listofLists):

M = zeros(len(listofLists))

for i in range(len(listofLists)):

for j in range(len(listofLists)):

lst = pair(listofLists[i], listofLists[j])

for k in lst:

M[i, j] += q**k

return M.applyfunc(simplify)

def dual(listofLists): # for computing specific dual elements

M = zeros(len(listofLists))

for i in range(len(listofLists)):

for j in range(len(listofLists)):

lst = pair(listofLists[i], listofLists[j])

for k in lst:

M[i, j] += q**k

N= M.inv()

return N.applyfunc(simplify)

def perm(tentlist): # given list of lists, removes linear dependence

fin = []

for i in range(len(tentlist)):

fin1 = list(fin)

fin1.append(tentlist[i])

M = mat(fin1)

if(M.det() != 0):

fin.append(tentlist[i])

return fin

def result(setofindices): # gives a basis of elements

tentlist = list(set(itertools.permutations(setofindices)))

for i in range(len(tentlist)):

tentlist[i] = list(tentlist[i])

tentlist = reduce(tentlist)

return perm(tentlist)

def reduce(tentlist): # remove duplicates

visited=[0 for i in range(len(tentlist))]

adj = [[0 for i in range(len(tentlist))] for j in range(len(tentlist))]

finlist = []

for n in range(len(tentlist)):

l = tentlist[n]

for ind in range(len(l) - 1):

if(a(l[ind], l[ind+1]) == 0):

ledit = l[:]

ledit[ind], ledit[ind+1] = ledit[ind+1], ledit[ind]

m = tentlist.index(ledit)

adj[m][n] = 1

adj[n][m] = 1

adjacents = [[] for i in range(len(tentlist))]

for i in range(len(tentlist)):

temp = []

for j in range(len(tentlist)):

if(adj[i][j] == 1):

temp.append(j)

adjacents[i] = temp

for n in range(len(tentlist)):

if(visited[n] == 0):

finlist.append(tentlist[n])

qu = deque([n])

while(qu):

curr = qu.popleft()

for neigh in adjacents[curr]:

if(visited[neigh] == 0):

visited[neigh] = 1

qu.append(neigh)

return finlist

Appendix B: Dual element expressions

We present here the full expressions for the Ai terms in the expression for the central element
of Uq(so8). These expressions are certain dual elements e∗µλ and f ∗λµ, with factors of ±(q −
1/q)n removed (and already included in the expression for Theorem 8).

The first few expressions follow the pattern discussed in Proposition 9, and thus they
should look familiar:

A1 = q3F1234 − q2F2314 − q2F3124 − q2F1423 + qF4213 + qF3241 + qF4132 − F4321,

A2 = q3E1234 − q2E2314 − q2E3124 − q2E1423 + qE4213 + qE3241 + qE4132 − E4321,

A3 = q3F4321 − q2F4132 − q2F4213 − q2F3241 + qF1423 + qF2314 + qF3124 − F1234,

A4 = q3E4321 − q2E4132 − q2E4213 − q2E3241 + qE1423 + qE2314 + qE3124 − E1234

The next expressions are the Ais corresponding to the index set (1, 2, 2, 3, 4):

A5 = q4F12342 + F23421 + q2F42132 + q2F24123 − qF23214 + q2F23124 − (q3 + q)F23142

− q4

q2+1
F12243 − q3F13242 + q2F32142 + q4−q2

q2+1
F42213 − q3F42123 − q2

q2+1
F34221,

A6 = q4E12342 + E23421 + q2E42132 + q2E24123 − qE23214 + q2E23124 − (q3 + q)E23142

− q4

q2+1
E12243 − q3E13242 + q2E32142 + q4−q2

q2+1
E42213 − q3E42123 − q2

q2+1
E34221,

A7 = F12342 + q4F23421 + q2F42132 + q2F24123 − q3F23214 + q2F23124 − (q3 + q)F23142

− q2

q2+1
F12243 − qF13242 + q2F32142 − q4−q2

q2+1
F42213 − qF42123 − q4

q2+1
F34221,

A8 = E12342 + q4E23421 + q2E42132 + q2E24123 − q3E23214 + q2E23124 − (q3 + q)E23142

− q2

q2+1
E12243 − qE13242 + q2E32142 − q4−q2

q2+1
E42213 − qE42123 − q4

q2+1
E34221
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Finally, here are the expressions corresponding to the index set (1, 1, 2, 2, 3, 4): they are
identical except with F ’s versus E’s.

A9 = (−q3 − q)F121342 − q4

(q2+1)2
F223141 + q2F143122 − q2F122341 − q2(q4+q2+1)

(q2+1)2
F412231 + q2F241312

− q3

q2+1
F131242 − q3

q2+1
F421231 + q3

q2+1
F232141 − (q3 + q)F413212 − q2F312241 + q2F132412

+ q3

q2+1
F114232 + q2F421321 + q2F123124 + q2F214231 − (q3 + q)F231421 + (q4 + q2 + 1)F124321,

A10 = (−q3 − q)E121342 − q4

(q2+1)2
E223141 + q2E143122 − q2E122341 − q2(q4+q2+1)

(q2+1)2
E412231 + q2E241312

− q3

q2+1
E131242 − q3

q2+1
E421231 + q3

q2+1
E232141 − (q3 + q)E413212 − q2E312241 + q2E132412

+ q3

q2+1
E114232 + q2E421321 + q2E123124 + q2E214231 − (q3 + q)E231421 + (q4 + q2 + 1)E124321.

The final six expressions listed have some denominators of (q2+1), which are absent in all
of the other elements. This factor comes from the Serre relation, and with a different choice
of basis for the indices (1, 2, 2, 3, 4) and (1, 1, 2, 2, 3, 4), it may be possible to make these
expressions cleaner. Ideally, a resolution of Conjecture 12 would provide a way to compute
these last six expressions without needing to manually invert the corresponding 15× 15 and
20× 20 M matrices, respectively.
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