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Outline of the talk

@ Define basic algebraic structures and research problem
@ Apply main formula for simple cases n = 3,4
@ Describe additional progress for general n

@ Show some probabilistic applications
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The underlying Lie algebra

Definition

The Lie algebra s0,,(C) is the set of 2n x 2n matrices

A B . _ T T _ T _
{[C D}.A DT,BT =-B,C" = C},

where A, B, C,D € C"*",
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The underlying Lie algebra

Definition

The Lie algebra s0,,(C) is the set of 2n x 2n matrices

A Bl A T pgT_ T_
{|¢ B]:a=-0mB7=-8.cT=~c}.

where A, B, C,D € C"*",

Main difference from ordinary abstract algebra: use the Lie bracket
[A, B] = AB — BA instead of multiplication.
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Roots, weights, and representations

@ Often study operators by analyzing eigenvalues and eigenspaces.
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Roots, weights, and representations

@ Often study operators by analyzing eigenvalues and eigenspaces.

@ Analogously, there are two types of “eigenvalues” we'll consider:
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Roots, weights, and representations

@ Often study operators by analyzing eigenvalues and eigenspaces.

@ Analogously, there are two types of “eigenvalues” we'll consider:

o Weights (denoted 1 or A) for 2n-dim. fundamental representation,
o Roots (denoted a; or —a;) for (2n)%-dim. adjoint representation.
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Roots, weights, and representations

@ Often study operators by analyzing eigenvalues and eigenspaces.

@ Analogously, there are two types of “eigenvalues” we'll consider:
o Weights (denoted 1 or A) for 2n-dim. fundamental representation,
o Roots (denoted a; or —a;) for (2n)%-dim. adjoint representation.

@ Let L; be a function which sends a matrix M to the diagonal entry
M;;. The weights and roots for so,, are

,u::tL,-, Oé:ﬂ:L,':l:Lj

for1<i<j<n.
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The algebras U(s02,) and U,(s02,)

e Universal enveloping algebra U(so0z,): “allow multiplication, not
just bracket.”
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The algebras U(so

e Universal enveloping algebra U(so0z,): “allow multiplication, not
just bracket.”

o Generated by E;, Fj, Hi (1 < i < n). Example (n = 2):

. 1 . . . .
E1=[ﬁ S ﬁ], F2=[ﬁ 1
. . —1 . —1 .
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The algebras U(so

e Universal enveloping algebra U(so0z,): “allow multiplication, not
just bracket.”

o Generated by E;, Fj, Hi (1 < i < n). Example (n = 2):

. 1 . . . .
E1=[ﬁ S ﬁ], F2=[ﬁ 1
. . —1 . —1 .

@ Our research studies the Drinfeld—Jimbo quantum group Ug(s02,).
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The algebras U(s02,) and U,(s02,)

e Universal enveloping algebra U(so0z,): “allow multiplication, not
just bracket.”

o Generated by E;, Fj, Hi (1 < i < n). Example (n = 2):

. 1 . . . .
E1=[ﬁ S ﬁ], F2=[ﬁ 1
. . —1 . —1 .

@ Our research studies the Drinfeld—Jimbo quantum group Ug(s02,).

o Generated by E;, F;, g™" with g-deformed relations
o Example of an element:

(q2 + 1)E12F1qH1_H2.
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The algebras U(s02,) and U,(s02,)

e Universal enveloping algebra U(so0z,): “allow multiplication, not
just bracket.”

o Generated by E;, Fj, Hi (1 < i < n). Example (n = 2):

. 1 . . . .
E1=[ﬁ S }, F2=[ﬁ 1
. . —1 . —1 .

@ Our research studies the Drinfeld—Jimbo quantum group Ug(s02,).

o Generated by E;, F;, g™" with g-deformed relations
o Example of an element:

(q2 + 1)E12F1qH1_H2.

@ Each index 1 < i < n corresponds to one of the roots «;.
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Motivation: the Casimir element

@ In U(soz,) (the symmetric case), the quadratic Casimir element is
a distinguished element of the center.
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Motivation: the Casimir element

@ In U(soz,) (the symmetric case), the quadratic Casimir element is
a distinguished element of the center.

@ This Casimir element can be procedurally represented as a generator
matrix of a Markov process.

Central Element of U, Stating the problem



Motivation: the Casimir element

@ In U(soz,) (the symmetric case), the quadratic Casimir element is
a distinguished element of the center.

@ This Casimir element can be procedurally represented as a generator
matrix of a Markov process.

o Idea: do something similar with Ug(s02,) (find a Casimir element,
then turn into a generator matrix). Should result in an asymmetric
process.
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The main problem and formula

Problem

Find an explicit form for a central element of U,(s02,) in terms of the
generators E;, F;, g/
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e main problem and formula

Problem
Find an explicit form for a central element of U,(s02,) in terms of the
generators E;, F;, g/

Recall: in U(s02,), we find dual elements and compute >, X;X'.

Proposition (Kuan '16)

For each weight 1, let v,, be a vector in its weight space. Given weights y, A,
suppose e, sends vy to v, and fy, sends v, to vy. If e;A and f;)\ are their
g-pairing dual elements, and p is half the sum of the positive roots of g, then

Z q(72p,u)qH72u + Z q(ufku)q(*Zﬂ,u)e:AqHﬂkA f,\*u
w n>X

is central in Uqg(g).
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Some terms are simpler

We wish to compute

Z q(*2p,#)qH_zu, + Z q(ll*)\-,ll)q(*2p-ﬂ)e;>\quu—>\ f;u'
H H>A
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Some terms are simpler

We wish to compute

Z q(*2p~,/t)qH_zu + Z q(ll*)\-,ll)q(*2p-,ll)e;>\qH—u—x f;u'
H H>A

o (—2p, ) and (u — A, p) are ordinary dot products, so the
corresponding terms are just powers of g.
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Some terms are simpler

We wish to compute

Z q(*2p~,/t)qH_zu + Z q(ll*)\-,ll)q(*2p-,ll)e;>\qH—u—x f;u'
H H>A

o (—2p, ) and (u — A, p) are ordinary dot products, so the
corresponding terms are just powers of g.

+H;

e g''s are products of g*"is, which are also simple to compute.
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Some terms are simpler

We wish to compute

Z q(*2Pslt)qH—2u + Z q(;rA-,ﬂ)q(*2p-,u)e;/\qu7x f;u'
H H>A

o (—2p, ) and (u — A, p) are ordinary dot products, so the
corresponding terms are just powers of g.

+H;

e g''s are products of g*"is, which are also simple to compute.

Thus, suffices to understand how e;A and f;u look.
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Computing e,y and fy,

The generators E;s and F;s are operators that move us between different
weight spaces.

Here, ¢,) and f,, send us from )\ to n and vice versa. In this case,
ey=FE--E,q,and f, = F_1--- F1.
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A g-deformed pairing

We introduce a function ( , ), which takes in (product of Fs and g"s)
and (product of Es and gs), outputting (rational function in g). More
formally: Ug(b—) x Uq(b+) — Q(q).
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A g-deformed pairing

We introduce a function ( , ), which takes in (product of Fs and g"s)
and (product of Es and gs), outputting (rational function in g). More
formally: Ug(b—) x Uq(b+) — Q(q).

@ For the generators, the only nonzero pairings are

1

Ha, Hay = _(aﬂ)v Fiin = T 1>
(q7*,q7)=q (Fi, Ei) pra——

where « and 3 are linear combinations of the ¢;s.
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A g-deformed pairing

We introduce a function ( , ), which takes in (product of Fs and g"s)
and (product of Es and gs), outputting (rational function in g). More
formally: Ug(b—) x Uq(b+) — Q(q).

@ For the generators, the only nonzero pairings are

1

HQ, Hoy = _(aﬂ)v Fiin = - ’
(q7*,q7)=q (Fi, Ei) pra——

where « and 3 are linear combinations of the ¢;s.
@ There is also an inductive way to compute things like
(" FoF1, g™ EE),

involving the coproduct of the generators.
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Sample values of the pairing

Take n = 4. Here are some example computations:
1

("] <F1F2,E1E2> - m
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Sample values of the pairing

Take n = 4. Here are some example computations:
1

(g—q1)*

o (FiF3F3, E3E1E3) = —

o (FiFy, EiE) =

=Y

Central Element of Ug (s o Applying the main formula



Sample values of the pairing

Take n = 4. Here are some example computations:
1

(g—q1)*

o (FiF3F3, E3E1E3) = —

o (FiFy, EiE) =

=Y

("] <F1F2F3, E1E2E2> = 0
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Sample values of the pairing

Take n = 4. Here are some example computations:
1

(g—q1)*

o (FiFsF3, B3E1E3) = —

o (FiFy, EiE) =
1
(g - q‘l)3(q2 b
("] <F1F2F3, E1E2E2> = 0
Lemma (L.)

The g-pairing of a product of Fs and a product of Es is only nonzero if
the indices are permutations of each other, in which case it is
(g — g~1)~" times a Laurent series in q.
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Finding the dual elements

Example: find dual element under ( , ) of FoF; for n = 3.
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Finding the dual elements

Example: find dual element under ( , ) of FoF; for n = 3.

e {FiF,, FoF1} both have nonzero pairing with both of {E; Ey, EyE; }.
(Call these {fi, .} and {e1, e2}.)
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Finding the dual elements

Example: find dual element under ( , ) of FoF; for n = 3.
e {FiF,, FoF1} both have nonzero pairing with both of {E; Ey, EyE; }.
(Call these {fi, .} and {e1, e2}.)

e Dual elements f* are combinations of the ¢;s, such that
(5.67) = by,
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Finding the dual elements

Example: find dual element under ( , ) of FoF; for n = 3.

e {FiF,, FoF1} both have nonzero pairing with both of {E; Ey, EyE; }.
(Call these {fi, .} and {e1, e2}.)

e Dual elements f* are combinations of the ¢;s, such that
(. £7) = 6.
o Form matrix of pairings M such that M;; = (f;, ¢;):

M=(q—-q")? [Jq I{q]

@ Invert the matrix and look at corresponding (second) row.

M*t=(g-q ") [_ql _ql]
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Finding the dual elements

Example: find dual element under ( , ) of FoF; for n = 3.

o {Fi1Fy, FoF1} both have nonzero pairing with both of {E1Ey, ExE; }.
(Call these {fi, .} and {e1, e2}.)

e Dual elements f* are combinations of the ¢;s, such that
(. £7) = 6.
o Form matrix of pairings M such that M;; = (f;, ¢;):

_ 1 1/q

—(r_ 4—1)2

M = (q q ) |:]_/q 1 :|

@ Invert the matrix and look at corresponding (second) row.

M*t=(g-q ") [_ql _ql]

The dual of R Fy is F* =|(q— ¢ Y)(— E1E + g5 ) |

Central Element of Ug (s Applying the main formula



Computational difficulties

Two main reasons this is more complicated than the other steps:
@ Matrix M needs to be invertible.

Central Element of U, Applying the main formula



Computational difficulties

Two main reasons this is more complicated than the other steps:
@ Matrix M needs to be invertible.

o Need to make sure different f;s and e;s linearly independent
o Serre relation makes this hard: for example,

ElE; + BEf = (1+ q)EiEE
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Computational difficulties

Two main reasons this is more complicated than the other steps:
@ Matrix M needs to be invertible.

o Need to make sure different f;s and e;s linearly independent
o Serre relation makes this hard: for example,

ElE; + BEf = (1+ q)EiEE

@ Larger sets of indices mean the dimensions of M are larger.
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Computational difficulties

Two main reasons this is more complicated than the other steps:
@ Matrix M needs to be invertible.

o Need to make sure different f;s and e;s linearly independent
o Serre relation makes this hard: for example,

ElE; + BEf = (1+ q)EiEE

@ Larger sets of indices mean the dimensions of M are larger.
o Inverting symbolic matrices takes time (with a computer)

Central Element of Ug(s Applying the main formula



The central element of Ug,(sos)

Let r=qg— %, and write (for example) EjEyE3 as Ejps.

Theorem (L.)

The following element of the quantum group Ug(so0s) is central:

g2 —Hy—H3 | —2—Hy—H3 | Hy—H3 | H3—Hy . 2+Hp+Hs | 4+2H +Hy+H3 | %quleszfH%l
q

2 HytH+H )

n_ n_
+ 15 Faa H3g, - 5 F3a M2 gy 1 12aFaaBEy — PaF3a2E5 + 2qPFq

2

Hy —H, —Hy—H;
17" (qEy1 — Epp) — 97(4’13 — F31)q” 17 "2(qE3; — E13)

2 _
+q7(qF12 — Fa1)a
2 Hy +H: 2 Hy +H,
+r2q(aFa1 — F12)q 1T (aErp — Ea1) — PalaFa — F3)a" T2 (qEr3 — E3p)
2 2 —Hp, 2
—?j(q F123 — aF213 — aF312 + Fa31)a” 1 (q"E231 — 9312 — 4E13 + E123)
2 (P Fy31 — aF31p — aF1s + Fio3)a! ™ (62Eqps — qEp1s — qEs1o + Eps1)
g (a"F231 — aF312 — aF213 + F123)q 1 (4" E123 — aEp13 — qE312 + o3y
4 2 2
*;7((17 + 1)F1231 — aF1312 — 9F2131)((4° + 1)E1231 — 91312 — 9E2131)
4
—r* PR3 By Es.

This element acts as a constant (g% + ¢ +2 + g2 + g °) times the
identity matrix in the fundamental representation.
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The central element of Uy(sos)

Theorem (L.)
The following element of the quantum group U,(sog) is central:

g—6—2M —2Hy—H3—Hy | —4—2Hy—H3—H; | —2—H3—Hy , H3—Hy
yqta—H3 | 2HHatHy | 4+2H)+HatHy | 6+2H)+2Hy+HatHy

+%FIQ—H1—2H2—H3—H4EI+% Hl—Hz—H3—H4(
q q

(qF12 — Fa1)a ™ aEp1 — E2)

Hy—Hy—Hy

2 2 = 2
+"75(q F123 — aF132 — aF13 + F301)9 9" E31 — abp13 — qE13p + E1p3)

2 2 —Hy—Hy—Hz 2
7;7507 Fio4 — aF1ap — qFos1 + Fap1q™ 17 2713 (q"Egpy — aEpa1 — aE1a2 + E124)

2 —Hy—H3—H, 2 —Hy—H, 2 —Hy—H:

toaFaa 2T T B+ (5 (aFos — Fao)a 2T M (aka2 — Ep3) — g (aFas — Fag)a” 2T B (aEa2 — Bog)
22 —Hy 2

- ;_,v(q F234 — aF324 — aF423 + Fa32)q (0 Eaz2 — qE324 — qEa23 + Ep3s)

A

2 2
- ;z((q + DF2342 — aF3042 — aF2423)((a” + 1)E2340 — aE3242 — qE2423)

2 2 2
+ LFaq” ey — LR e,

S
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results



The central element of Uy(sog), continued

Theorem

(Here is the rest of the element.)

4 2 2 Hy (2
= r'F3FyE4E3 — - (a"Fazp — aF3p4 — aFa3 + Fp34)a 2 (a” Ep3s — aE324 — aE423 + E432)

2 Hy+H; 2 H 2 Ho+H:
,%q nar 2 — ParaaBE, — PalaFey — Faa)a 2T (aEpy — Egp)

Hy+Hy+Hz 2
1HH2 03 (42 E1pg — qE1an — aEpa1 + Eqp1)

2 2
—r°a(q”Fap1 — aFpa1 — aF1a2 + F124)q
2 H, 2 Hy+H,
+r2aF3q™ 3 + rPalaFsp — Fap)a' 214 (aEp3 — E3p)
2 2 Hy+Hy+Hy (2
+r24(q° F3p1 — aFo13 — aF13p + Fio3)a’ L T2 14 (62 Erpg — aEy3p — aBrs + Eapr)

HytHs+Hyp, o 203 gHi+Ho+Ha+HHy Hy+2Hy +Ha+Hy g

2 2
+r2q> Faq aF1 — F12) aE1p — Ex1) + r*a>Fiq

where the 10 boxed s are omitted for brevity. This element acts as

@+ q"+q>+2+ g2+ g * + g8 times the identity matrix in the
fundamental representation.
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Dual elements for general n

A strategy for computing certain dual elements:

Proposition (L.)

Suppose each index only shows up once in an element of e, or fy,.
Then the matrix M~ can be inductively computed by tensoring the

. : . . -1
inverse matrix from a smaller set of indices repeatedly with [ql q ]
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Dual elements for general n

A strategy for computing certain dual elements:

Proposition (L.)

Suppose each index only shows up once in an element of e, or fy,.
Then the matrix M~ can be inductively computed by tensoring the

. : . . -1
inverse matrix from a smaller set of indices repeatedly with [ql q ]

e Dual of Ey is (g — g7 Y)Fy.
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Dual elements for general n

A strategy for computing certain dual elements:

Proposition (L.)

Suppose each index only shows up once in an element of e, or fy,.
Then the matrix M~ can be inductively computed by tensoring the

. : . . -1
inverse matrix from a smaller set of indices repeatedly with [ql q ]

e Dual of Ey is (g — g7 Y)Fy.
o Dual of E;E; is (g — g 1) (gF1Fa — FaFy).
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Dual elements for general n

A strategy for computing certain dual elements:

Proposition (L.)

Suppose each index only shows up once in an element of e, or fy,.
Then the matrix M~ can be inductively computed by tensoring the

inverse matrix from a smaller set of indices repeatedly with [ql ql].
e Dual of Ey is (g — g7 Y)Fy.
@ Dual of £1E> is (q — q_l)(qF]_F2 — FQFl).
@ Dual of EiEEz is (g— qfl)(qungFg, — gFiF3Fy — gF2FiF3 + F3FaFr).
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Dual elements for general n

A strategy for computing certain dual elements:

Proposition (L.)

Suppose each index only shows up once in an element of e, or fy,.
Then the matrix M~ can be inductively computed by tensoring the

inverse matrix from a smaller set of indices repeatedly with [ql ql].
e Dual of Ey is (g — g7 Y)Fy.
@ Dual of £1E> is (q — q_l)(qF]_F2 — FQFl).
@ Dual of EiEEz is (g— qfl)(qungFg, — gFiF3Fy — gF2FiF3 + F3FaFr).
Notably, the dimension (number of rows) of M is always a power of 2.
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Dual elements for general n, continued

@ The above strategy doesn’t work for repeated indices.
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Dual elements for general n, continued

@ The above strategy doesn’t work for repeated indices.
@ However, the dimensions of M for small n show a pattern.

e The dimension for indices (2,2,3,4) in n =4 is 5.
o The dimensions for (1,2,2,3.4) and (1,1,2,2,3,4) are 15 and 20.
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Dual elements for general n, continued

@ The above strategy doesn’t work for repeated indices.
@ However, the dimensions of M for small n show a pattern.
e The dimension for indices (2,2,3,4) in n =4 is 5.
o The dimensions for (1,2,2,3.4) and (1,1,2,2,3,4) are 15 and 20.

Conjecture

Suppose the index x; — 1 is being added to a set of indices
S = (x1, -+ ,xm) of dimension d, where x; < -+ < x,, and x; < n— 2.

e If x; appears twice and we add (x1 — 1) once, the dimension becomes 3d.
e If x; appears twice and we add (xi — 1) twice, the dimension becomes 4d.

Suppose M is the a pairing matrix for some basis for S. Then we can
find a 3 x 3 matrix M; and a 4 x 4 matrix M, such that the new pairing
matrix M’ is M & M; in the first case and M @ M, in the second case.

Central Element of Uqg(s Main results



From central element to tensor representation

In order to extract the probabilistic interpretation:
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From central element to tensor representation

In order to extract the probabilistic interpretation:
@ Replace each generator with its coproduct. For example,

E—-E®l+q¢"E.

(This is similar to the symmetric case, where E; — E; @ | + 1 ® E;.)
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From central element to tensor representation

In order to extract the probabilistic interpretation:
@ Replace each generator with its coproduct. For example,

E—-E®l+q¢"E.

(This is similar to the symmetric case, where E; — E; @ | + 1 ® E;.)
e End up with a 4n? x 4n° matrix with coefficients in terms of g.

@ In other words, every single generator that showed up in the
central elements earlier is represented as a 4n® x 4n° matrix.

Probabilistic applications

Central Element of Uqg(s



Modifying to a generator matrix

The resulting 4n? x 4n? matrix is not yet a generator matrix, just like in
the symmetric case.
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Modifying to a generator matrix

The resulting 4n? x 4n? matrix is not yet a generator matrix, just like in
the symmetric case.

o Key idea: if Mv =0, where v = (v,---, vy), we can conjugate by a
diagonal matrix D = diag(vy, -, vn).

@ This makes all rows sum to O.
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Modifying to a generator matrix

The resulting 4n? x 4n? matrix is not yet a generator matrix, just like in
the symmetric case.

o Key idea: if Mv =0, where v = (v,---, vy), we can conjugate by a
diagonal matrix D = diag(vy, -, vn).

@ This makes all rows sum to O.

This procedure differs from the alternative method of subtracting a
diagonal matrix and then negating rows.

Central Element of U, Probabilistic applications



Preliminary observations

Recall these properties of the generator matrix in the symmetric case:
@ All nonzero off-diagonal entries equal

@ 2n absorbing states, 2n maximal-choice states, all others pairwise.
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Preliminary observations

Recall these properties of the generator matrix in the symmetric case:
@ All nonzero off-diagonal entries equal
@ 2n absorbing states, 2n maximal-choice states, all others pairwise.
Similar properties can be observed at least for Uy(s06) and Ug(sog):

@ The absorbing and pairwise states interact in the same ways (except
the jump rates differ by a factor of g2, causing drift).
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Preliminary observations

Recall these properties of the generator matrix in the symmetric case:
@ All nonzero off-diagonal entries equal
@ 2n absorbing states, 2n maximal-choice states, all others pairwise.
Similar properties can be observed at least for Uy(s06) and Ug(sog):

@ The absorbing and pairwise states interact in the same ways (except
the jump rates differ by a factor of g2, causing drift).

@ However, only 4 of the 2n maximal-choice states are reachable from
each other (finite jump rates). No fission or fusion occurs.

o—e O—6 6—OCO e6—O

o—® 6—O 6—OCO O—e

Central Element of Uqg(s Probabilistic applications



Patterns in the coefficients

o—e O—6 6—O e6—O
1 2 3 4
o—e 6—0O 6—OC O—e

Here is the generator submatrix for n = 3:

—1-2¢% +¢% —¢® —q'0 22— q* + ) (¢* —1)? a2 - q* + )
r a2 — q* + %) —1+2q% + ¢® — 2410 1— ¢ +2° (g - 1)?
¢ q*(q* - 1)? (1L — ¢® +245) —q? — q* +q® —2¢'0 — g2 g*(1 — ¢® +245)
@ —q*+ % (" —1)? (1 — ¢2 +24%) —2q% + ¢* — 248 — ¢'?

Central Element of U, Probabilistic applications



Patterns in the coefficients

o—e O—6 6—O e6—O
1 2 3 4
o—e 6—0O 6—OC O—e

Here is the generator submatrix for n = 3:

—1-2¢% +¢0 — ¢ — 410 22— q* + ) (¢* —1)?
r a2 — q* + %) —1+2q% + ¢® — 2410 1— ¢ +2°
4 q*(q* - 1)? (1L — ¢® +245) —q? — q* +¢0 —2q10 — 12
®2 — q* +¢°) @ —1)? 1 — % +24%)

@ Three different groups: red, blue, green
e Symmetry between g and %.
@ Limit as g — 1.

Central Element of U, Probabilistic applications

a2 - q* + )
P —1)?
a*(1 = 4% + 2%

—2¢2 +q* — 248 — ¢

12
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