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Outline of the talk

Define basic algebraic structures and research problem

Apply main formula for simple cases n = 3, 4

Describe additional progress for general n

Show some probabilistic applications
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The underlying Lie algebra

Definition

The Lie algebra so2n(C) is the set of 2n × 2n matrices{[
A B
C D

]
: A = −DT ,BT = −B,CT = −C

}
,

where A,B,C ,D ∈ Cn×n.

Main difference from ordinary abstract algebra: use the Lie bracket
[A,B] = AB − BA instead of multiplication.
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Roots, weights, and representations

Often study operators by analyzing eigenvalues and eigenspaces.

Analogously, there are two types of “eigenvalues” we’ll consider:

Weights (denoted µ or λ) for 2n-dim. fundamental representation,
Roots (denoted αi or −αi ) for (2n)2-dim. adjoint representation.

Let Li be a function which sends a matrix M to the diagonal entry
Mii . The weights and roots for so2n are

µ = ±Li , α = ±Li ± Lj

for 1 ≤ i < j ≤ n.
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The algebras U(so2n) and Uq(so2n)

Universal enveloping algebra U(so2n): “allow multiplication, not
just bracket.”

Generated by Ei ,Fi ,Hi (1 ≤ i ≤ n). Example (n = 2):

E1 =

[
· 1 · ·
· · · ·
· · · ·
· · −1 ·

]
, F2 =

[
· · · ·
· · · ·
· 1 · ·

−1 · · ·

]
, H1 =

[
1 · · ·
· −1 · ·
· · −1 ·
· · · 1

]

Our research studies the Drinfeld–Jimbo quantum group Uq(so2n).

Generated by Ei ,Fi , q
±Hi with q-deformed relations

Example of an element:

(q2 + 1)E 2
1F1q

H1−H2 .

Each index 1 ≤ i ≤ n corresponds to one of the roots αi .
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Motivation: the Casimir element

In U(so2n) (the symmetric case), the quadratic Casimir element is
a distinguished element of the center.

This Casimir element can be procedurally represented as a generator
matrix of a Markov process.

Idea: do something similar with Uq(so2n) (find a Casimir element,
then turn into a generator matrix). Should result in an asymmetric
process.
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The main problem and formula

Problem

Find an explicit form for a central element of Uq(so2n) in terms of the
generators Ei ,Fi , q

Hi .

Recall: in U(so2n), we find dual elements and compute
∑

i XiX
i .

Proposition (Kuan ’16)

For each weight µ, let vµ be a vector in its weight space. Given weights µ, λ,
suppose eµλ sends vλ to vµ and fλµ sends vµ to vλ. If e∗µλ and f ∗µλ are their
q-pairing dual elements, and ρ is half the sum of the positive roots of g, then∑

µ

q(−2ρ,µ)qH−2µ +
∑
µ>λ

q(µ−λ,µ)q(−2ρ,µ)e∗µλq
H−µ−λ f ∗λµ

is central in Uq(g).
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Some terms are simpler

We wish to compute∑
µ

q(−2ρ,µ)qH−2µ +
∑
µ>λ

q(µ−λ,µ)q(−2ρ,µ)e∗µλq
H−µ−λ f ∗λµ.

(−2ρ, µ) and (µ− λ, µ) are ordinary dot products, so the
corresponding terms are just powers of q.

qHs are products of q±Hi s, which are also simple to compute.

Thus, suffices to understand how e∗µλ and f ∗λµ look.
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Computing eµλ and fλµ

The generators Ei s and Fi s are operators that move us between different
weight spaces.

Ln

−Ln

−Ln−1Ln−1 −L2L2 −L1L1 · · · · · ·
E1 −E1

En−1

En

−En

−En−1

µ

λ

Here, eµλ and fλµ send us from λ to µ and vice versa. In this case,
eµλ = E1 · · ·En−1, and fλµ = Fn−1 · · ·F1.
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A q-deformed pairing

We introduce a function 〈 , 〉, which takes in (product of F s and qHs)
and (product of E s and qHs), outputting (rational function in q). More
formally: Uq(b−)× Uq(b+)→ Q(q).

For the generators, the only nonzero pairings are

〈qHα , qHβ 〉 = q−(α·β), 〈Fi ,Ei 〉 = − 1

q − q−1
,

where α and β are linear combinations of the αi s.

There is also an inductive way to compute things like

〈qH1F2F1, q
H2E1E2〉,

involving the coproduct of the generators.
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Sample values of the pairing

Take n = 4. Here are some example computations:

〈F1F2,E1E2〉 =
1

(q − q−1)2
.

〈F1F3F3,E3E1E3〉 = − 1

(q − q−1)3
(q2 + 1).

〈F1F2F3,E1E2E2〉 = 0.

Lemma (L.)

The q-pairing of a product of F s and a product of E s is only nonzero if
the indices are permutations of each other, in which case it is
(q − q−1)−n times a Laurent series in q.
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Finding the dual elements

Example: find dual element under 〈 , 〉 of F2F1 for n = 3.

{F1F2,F2F1} both have nonzero pairing with both of {E1E2,E2E1}.
(Call these {f1, f2} and {e1, e2}.)

Dual elements f ∗i are combinations of the ei s, such that
〈fi , f ∗j 〉 = δij .

Form matrix of pairings M such that Mij = 〈fi , ej〉:

M = (q − q−1)2
[

1 1/q
1/q 1

]
Invert the matrix and look at corresponding (second) row.

M−1 = (q − q−1)

[
q −1
−1 q

]

The dual of F2F1 is f ∗ = (q − q−1)(−E1E2 + qE2E1) .
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Computational difficulties

Two main reasons this is more complicated than the other steps:

Matrix M needs to be invertible.

Need to make sure different fi s and ei s linearly independent
Serre relation makes this hard: for example,

E 2
1E2 + E2E

2
1 = (1 + q)E1E2E1

Larger sets of indices mean the dimensions of M are larger.

Inverting symbolic matrices takes time (with a computer)
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The central element of Uq(so6)

Let r = q − 1
q , and write (for example) E1E2E3 as E123.

Theorem (L.)

The following element of the quantum group Uq(so6) is central:

q−4−2H1−H2−H3 + q−2−H2−H3 + qH2−H3 + qH3−H2 + q2+H2+H3 + q4+2H1+H2+H3 + r2

q3
F1q

−H1−H2−H3 E1

+ r2

q
F2q

−H3 E2 − r2

q
F3q

−H2 E3 + r2qF2q
H3 E2 − r2qF3q

H2 E3 + r2q3F1q
H1+H2+H3 E1

+ r2

q3
(qF12 − F21)q

−H1−H3 (qE21 − E12) −
r2

q3
(qF13 − F31)q

−H1−H2 (qE31 − E13)

+r2q(qF21 − F12)q
H1+H3 (qE12 − E21) − r2q(qF31 − F13)q

H1+H2 (qE13 − E31)

− r2

q3
(q2F123 − qF213 − qF312 + F231)q

−H1 (q2E231 − qE312 − qE213 + E123)

− r2

q
(q2F231 − qF312 − qF213 + F123)q

H1 (q2E123 − qE213 − qE312 + E231)

− r4

q2
((q2 + 1)F1231 − qF1312 − qF2131)((q

2 + 1)E1231 − qE1312 − qE2131)

−r4F2F3E2E3.

This element acts as a constant (q6 + q2 + 2 + q−2 + q−6) times the
identity matrix in the fundamental representation.

Central Element of Uq (so2n) Main results 14 / 24



The central element of Uq(so8)

Theorem (L.)

The following element of the quantum group Uq(so8) is central:

q−6−2H1−2H2−H3−H4 + q−4−2H2−H3−H4 + q−2−H3−H4 + qH3−H4

+qH4−H3 + q2+H3+H4 + q4+2H2+H3+H4 + q6+2H1+2H2+H3+H4

+ r2

q5
F1q

−H1−2H2−H3−H4 E1 + r2

q5
(qF12 − F21)q

−H1−H2−H3−H4 (qE21 − E12)

+ r2

q5
(q2F123 − qF132 − qF213 + F321)q

−H1−H2−H4 (q2E321 − qE213 − qE132 + E123)

− r2

q5
(q2F124 − qF142 − qF241 + F421q

−H1−H2−H3 (q2E421 − qE241 − qE142 + E124)

− r2

q5
A1 q−H1−H2 A4 − r2

q5
A5 q−H1 A8 − r4

q4
A9 A10

+ r2

q3
F2q

−H2−H3−H4 E2 + r2

q3
(qF23 − F32)q

−H2−H4 (qE32 − E23) −
r2

q3
(qF24 − F42)q

−H2−H3 (qE42 − E24)

− r2

q3
(q2F234 − qF324 − qF423 + F432)q

−H2 (q2E432 − qE324 − qE423 + E234)

− r4

q2
((q2 + 1)F2342 − qF3242 − qF2423)((q

2 + 1)E2342 − qE3242 − qE2423)

− r2

q3
A7 qH1 A6 + r2

q
F3q

−H4 E3 − r2

q
F4q

−H3 E4 · · ·
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The central element of Uq(so8), continued

Theorem

(Here is the rest of the element.)

· · · − r4F3F4E4E3 − r2

q
(q2F432 − qF324 − qF423 + F234)q

H2 (q2E234 − qE324 − qE423 + E432)

− r2

q
A3 qH1+H2 A2 − r2qF4q

H3 E4 − r2q(qF42 − F24)q
H2+H3 (qE24 − E42)

−r2q(q2F421 − qF241 − qF142 + F124)q
H1+H2+H3 (q2E124 − qE142 − qE241 + E421)

+r2qF3q
H4 E3 + r2q(qF32 − F32)q

H2+H4 (qE23 − E32)

+r2q(q2F321 − qF213 − qF132 + F123)q
H1+H2+H4 (q2E123 − qE132 − qE213 + E321)

+r2q3F2q
H2+H3+H4 E2 + r2q3(qF21 − F12)q

H1+H2+H3+H4 (qE12 − E21) + r2q5F1q
H1+2H2+H3+H4 E1,

where the 10 boxed Ai s are omitted for brevity. This element acts as

q8 + q4 + q2 + 2 + q−2 + q−4 + q−8 times the identity matrix in the
fundamental representation.
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Dual elements for general n

A strategy for computing certain dual elements:

Proposition (L.)

Suppose each index only shows up once in an element of eµλ or fλµ.
Then the matrix M−1 can be inductively computed by tensoring the

inverse matrix from a smaller set of indices repeatedly with

[
q −1
−1 q

]
.

Dual of E1 is (q − q−1)F1.

Dual of E1E2 is (q − q−1)(qF1F2 − F2F1).

Dual of E1E2E3 is (q − q−1)(q2F1F2F3 − qF1F3F2 − qF2F1F3 + F3F2F1).

Notably, the dimension (number of rows) of M is always a power of 2.
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Dual elements for general n, continued

The above strategy doesn’t work for repeated indices.

However, the dimensions of M for small n show a pattern.

The dimension for indices (2, 2, 3, 4) in n = 4 is 5.
The dimensions for (1, 2, 2, 3, 4) and (1, 1, 2, 2, 3, 4) are 15 and 20.

Conjecture

Suppose the index x1 − 1 is being added to a set of indices
S = (x1, · · · , xm) of dimension d , where x1 ≤ · · · ≤ xm and x1 ≤ n − 2.

If x1 appears twice and we add (x1 − 1) once, the dimension becomes 3d .

If x1 appears twice and we add (x1 − 1) twice, the dimension becomes 4d .

Suppose M is the a pairing matrix for some basis for S . Then we can
find a 3× 3 matrix M1 and a 4× 4 matrix M2, such that the new pairing
matrix M ′ is M ⊗M1 in the first case and M ⊗M2 in the second case.
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From central element to tensor representation

In order to extract the probabilistic interpretation:

Replace each generator with its coproduct. For example,

Ei → Ei ⊗ I + qHi ⊗ Ei .

(This is similar to the symmetric case, where Ei → Ei ⊗ I + I ⊗ Ei .)

End up with a 4n2 × 4n2 matrix with coefficients in terms of q.

In other words, every single generator that showed up in the
central elements earlier is represented as a 4n2 × 4n2 matrix.
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Modifying to a generator matrix

The resulting 4n2 × 4n2 matrix is not yet a generator matrix, just like in
the symmetric case.

Key idea: if Mv = 0, where v = (v1, · · · , vN), we can conjugate by a
diagonal matrix D = diag(v1, · · · , vN).

This makes all rows sum to 0.

This procedure differs from the alternative method of subtracting a
diagonal matrix and then negating rows.
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Preliminary observations

Recall these properties of the generator matrix in the symmetric case:

All nonzero off-diagonal entries equal

2n absorbing states, 2n maximal-choice states, all others pairwise.

Similar properties can be observed at least for Uq(so6) and Uq(so8):

The absorbing and pairwise states interact in the same ways (except
the jump rates differ by a factor of q2, causing drift).

However, only 4 of the 2n maximal-choice states are reachable from
each other (finite jump rates). No fission or fusion occurs.
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Patterns in the coefficients

1 2 3 4

Here is the generator submatrix for n = 3:

1

q6


−1 − 2q2 + q6 − q8 − q10 q2(2 − q4 + q6) (q4 − 1)2 q4(2 − q4 + q6)

q4(2 − q4 + q6) −1 + 2q4 + q8 − 2q10 1 − q2 + 2q6 q2(q4 − 1)2

q4(q4 − 1)2 q2(1 − q2 + 2q6) −q2 − q4 + q6 − 2q10 − q12 q4(1 − q2 + 2q6)

q6(2 − q4 + q6) q2(q4 − 1)2 q2(1 − q2 + 2q6) −2q2 + q4 − 2q8 − q12



Three different groups: red, blue, green

Symmetry between q and 1
q .

Limit as q → 1.
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