A Central Element of the Quantum Group $U_q(\mathfrak{so}_{2n})$

Andrew Lin

Texas A&M Probability and Algebra REU

July 20, 2020

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Define basic algebraic structures and research problem
- Apply main formula for simple cases n = 3, 4
- Describe additional progress for general n
- Show some probabilistic applications

Definition

The Lie algebra $\mathfrak{so}_{2n}(\mathbb{C})$ is the set of $2n \times 2n$ matrices

$$\left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} : A = -D^T, B^T = -B, C^T = -C \right\},\$$

where $A, B, C, D \in \mathbb{C}^{n \times n}$.

Main difference from ordinary abstract algebra: use the **Lie bracket** [A, B] = AB - BA instead of multiplication.

э

듣▶ ★ 듣▶ ...

Definition

The Lie algebra $\mathfrak{so}_{2n}(\mathbb{C})$ is the set of $2n \times 2n$ matrices

$$\left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} : A = -D^T, B^T = -B, C^T = -C \right\},$$

where $A, B, C, D \in \mathbb{C}^{n \times n}$.

Main difference from ordinary abstract algebra: use the **Lie bracket** [A, B] = AB - BA instead of multiplication.

э

문에 세명에 다

• Often study operators by analyzing eigenvalues and eigenspaces.

• Analogously, there are two types of "eigenvalues" we'll consider:

- Weights (denoted μ or λ) for 2*n*-dim. fundamental representation,
- Roots (denoted α_i or $-\alpha_i$) for $(2n)^2$ -dim. adjoint representation.
- Let L_i be a function which sends a matrix M to the diagonal entry M_{ii} . The weights and roots for \mathfrak{so}_{2n} are

$$\mu = \pm L_i, \quad \alpha = \pm L_i \pm L_j$$

- Often study operators by analyzing eigenvalues and eigenspaces.
- Analogously, there are two types of "eigenvalues" we'll consider:
 - Weights (denoted μ or λ) for 2*n*-dim. fundamental representation,
 - Roots (denoted α_i or $-\alpha_i$) for $(2n)^2$ -dim. **adjoint** representation.
- Let L_i be a function which sends a matrix M to the diagonal entry M_{ii} . The weights and roots for \mathfrak{so}_{2n} are

$$\mu = \pm L_i, \quad \alpha = \pm L_i \pm L_j$$

- Often study operators by analyzing eigenvalues and eigenspaces.
- Analogously, there are two types of "eigenvalues" we'll consider:
 - Weights (denoted μ or λ) for 2*n*-dim. fundamental representation,
 - Roots (denoted α_i or $-\alpha_i$) for $(2n)^2$ -dim. adjoint representation.
- Let L_i be a function which sends a matrix M to the diagonal entry M_{ii}. The weights and roots for so_{2n} are

$$\mu = \pm L_i, \quad \alpha = \pm L_i \pm L_j$$

- Often study operators by analyzing eigenvalues and eigenspaces.
- Analogously, there are two types of "eigenvalues" we'll consider:
 - Weights (denoted μ or λ) for 2*n*-dim. fundamental representation,
 - Roots (denoted α_i or $-\alpha_i$) for $(2n)^2$ -dim. adjoint representation.
- Let L_i be a function which sends a matrix M to the diagonal entry M_{ii} . The weights and roots for \mathfrak{so}_{2n} are

$$\mu = \pm L_i, \quad \alpha = \pm L_i \pm L_j$$

- Universal enveloping algebra $U(\mathfrak{so}_{2n})$: "allow multiplication, not just bracket."
 - Generated by E_i, F_i, H_i $(1 \le i \le n)$. Example (n = 2):

$$E_1 = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \end{bmatrix}, \quad F_2 = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \end{bmatrix}, \quad H_1 = \begin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & -1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 & \cdot \end{bmatrix}$$

• Our research studies the Drinfeld–Jimbo quantum group $U_q(\mathfrak{so}_{2n})$.

- Generated by E_i, F_i, q^{±H_i} with q-deformed relations
- Example of an element:

$$(q^2+1)E_1^2F_1q^{H_1-H_2}.$$

• Each index $1 \le i \le n$ corresponds to one of the roots α_i .

- 4 同 6 4 日 6 4 日 6

- Universal enveloping algebra U(so_{2n}): "allow multiplication, not just bracket."
 - Generated by E_i, F_i, H_i $(1 \le i \le n)$. Example (n = 2):

$$E_1 = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \end{bmatrix}, \ F_2 = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \end{bmatrix}, \ H_1 = \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & -1 & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 \end{bmatrix}$$

• Our research studies the Drinfeld–Jimbo quantum group $U_q(\mathfrak{so}_{2n})$.

• Generated by $E_i, F_i, q^{\pm H_i}$ with *q*-deformed relations

• Example of an element:

$$(q^2+1)E_1^2F_1q^{H_1-H_2}.$$

• Each index $1 \le i \le n$ corresponds to one of the roots α_i .

< 同 > < 三 > < 三 > -

- Universal enveloping algebra U(so_{2n}): "allow multiplication, not just bracket."
 - Generated by E_i, F_i, H_i $(1 \le i \le n)$. Example (n = 2):

$$E_{1} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \end{bmatrix}, \quad F_{2} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \end{bmatrix}, \quad H_{1} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & -1 & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 \end{bmatrix}$$

• Our research studies the Drinfeld–Jimbo quantum group $U_q(\mathfrak{so}_{2n})$.

Generated by E_i, F_i, q^{±H_i} with q-deformed relations

Example of an element:

$$(q^2+1)E_1^2F_1q^{H_1-H_2}.$$

• Each index $1 \le i \le n$ corresponds to one of the roots α_i .

イロト イヨト イヨト イヨト

- Universal enveloping algebra U(so_{2n}): "allow multiplication, not just bracket."
 - Generated by E_i, F_i, H_i $(1 \le i \le n)$. Example (n = 2):

$$E_{1} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \end{bmatrix}, \quad F_{2} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \end{bmatrix}, \quad H_{1} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & -1 & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 \end{bmatrix}$$

- Our research studies the Drinfeld–Jimbo quantum group $U_q(\mathfrak{so}_{2n})$.
 - Generated by $E_i, F_i, q^{\pm H_i}$ with q-deformed relations
 - Example of an element:

$$(q^2+1)E_1^2F_1q^{H_1-H_2}$$

• Each index $1 \le i \le n$ corresponds to one of the roots α_i .

|田 | | 田 | (田)

- Universal enveloping algebra U(so_{2n}): "allow multiplication, not just bracket."
 - Generated by E_i, F_i, H_i $(1 \le i \le n)$. Example (n = 2):

$$E_{1} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \end{bmatrix}, \quad F_{2} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \end{bmatrix}, \quad H_{1} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & -1 & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 \end{bmatrix}$$

- Our research studies the Drinfeld–Jimbo quantum group $U_q(\mathfrak{so}_{2n})$.
 - Generated by $E_i, F_i, q^{\pm H_i}$ with q-deformed relations
 - Example of an element:

$$(q^2+1)E_1^2F_1q^{H_1-H_2}.$$

• Each index $1 \le i \le n$ corresponds to one of the roots α_i .

▲御▶ ▲ 理▶ ▲ 理▶

- In $U(\mathfrak{so}_{2n})$ (the symmetric case), the quadratic Casimir element is a distinguished element of the center.
- This Casimir element can be procedurally represented as a generator matrix of a Markov process.
- Idea: do something similar with $U_q(\mathfrak{so}_{2n})$ (find a Casimir element, then turn into a generator matrix). Should result in an asymmetric process.

・ 同 ト ・ ヨ ト ・ ヨ ト

- In $U(\mathfrak{so}_{2n})$ (the symmetric case), the quadratic Casimir element is a distinguished element of the center.
- This Casimir element can be procedurally represented as a generator matrix of a Markov process.
- Idea: do something similar with Uq(so_{2n}) (find a Casimir element, then turn into a generator matrix). Should result in an asymmetric process.

프 () (프 ())

- In $U(\mathfrak{so}_{2n})$ (the symmetric case), the quadratic Casimir element is a distinguished element of the center.
- This Casimir element can be procedurally represented as a generator matrix of a Markov process.
- Idea: do something similar with $U_q(\mathfrak{so}_{2n})$ (find a Casimir element, then turn into a generator matrix). Should result in an asymmetric process.

Problem

Find an explicit form for a central element of $U_q(\mathfrak{so}_{2n})$ in terms of the generators E_i, F_i, q^{H_i} .

Recall: in $U(\mathfrak{so}_{2n})$, we find dual elements and compute $\sum_i X_i X^i$.

Proposition (Kuan '16)

For each weight μ , let v_{μ} be a vector in its weight space. Given weights μ, λ , suppose $e_{\mu\lambda}$ sends v_{λ} to v_{μ} and $f_{\lambda\mu}$ sends v_{μ} to v_{λ} . If $e_{\mu\lambda}^{*}$ and $f_{\mu\lambda}^{*}$ are their *q*-pairing dual elements, and ρ is half the sum of the positive roots of g, then

$$\sum_{\mu}q^{(-2
ho,\mu)}q^{H_{-2\mu}}+\sum_{\mu>\lambda}q^{(\mu-\lambda,\mu)}q^{(-2
ho,\mu)}\mathsf{e}^{*}_{\mu\lambda}q^{H_{-\mu-\lambda}}f^{*}_{\lambda\mu}$$

is central in $U_q(\mathfrak{g})$.

< ロ > < 同 > < 三 > < 三 > <

Problem

Find an explicit form for a central element of $U_q(\mathfrak{so}_{2n})$ in terms of the generators E_i, F_i, q^{H_i} .

Recall: in $U(\mathfrak{so}_{2n})$, we find dual elements and compute $\sum_i X_i X^i$.

Proposition (Kuan '16)

For each weight μ , let v_{μ} be a vector in its weight space. Given weights μ , λ , suppose $e_{\mu\lambda}$ sends v_{λ} to v_{μ} and $f_{\lambda\mu}$ sends v_{μ} to v_{λ} . If $e_{\mu\lambda}^{*}$ and $f_{\mu\lambda}^{*}$ are their *q*-pairing dual elements, and ρ is half the sum of the positive roots of g, then

$$\sum_{\mu} q^{(-2
ho,\mu)} q^{H_{-2\mu}} + \sum_{\mu>\lambda} q^{(\mu-\lambda,\mu)} q^{(-2
ho,\mu)} e^*_{\mu\lambda} q^{H_{-\mu-\lambda}} f^*_{\lambda\mu}$$

is central in $U_q(\mathfrak{g})$.

$$\sum_{\mu} q^{(-2\rho,\mu)} q^{H_{-2\mu}} + \sum_{\mu > \lambda} q^{(\mu-\lambda,\mu)} q^{(-2\rho,\mu)} e^*_{\mu\lambda} q^{H_{-\mu-\lambda}} f^*_{\lambda\mu}.$$

• $(-2\rho, \mu)$ and $(\mu - \lambda, \mu)$ are ordinary dot products, so the corresponding terms are just powers of q.

• q^H s are products of $q^{\pm H_i}$ s, which are also simple to compute.

Thus, suffices to understand how $e_{\mu\lambda}^*$ and $f_{\lambda\mu}^*$ look.

· · · · · · · · ·

$$\sum_{\mu} q^{(-2\rho,\mu)} q^{H_{-2\mu}} + \sum_{\mu > \lambda} q^{(\mu-\lambda,\mu)} q^{(-2\rho,\mu)} e^*_{\mu\lambda} q^{H_{-\mu-\lambda}} f^*_{\lambda\mu}.$$

- $(-2\rho, \mu)$ and $(\mu \lambda, \mu)$ are ordinary dot products, so the corresponding terms are just powers of q.
- q^Hs are products of q^{±H}s, which are also simple to compute.

Thus, suffices to understand how $e_{u\lambda}^*$ and $f_{\lambda\mu}^*$ look.

ト 4 注 ト 4 注 ト

$$\sum_{\mu} q^{(-2\rho,\mu)} q^{H_{-2\mu}} + \sum_{\mu > \lambda} q^{(\mu-\lambda,\mu)} q^{(-2\rho,\mu)} e^*_{\mu\lambda} q^{H_{-\mu-\lambda}} f^*_{\lambda\mu}.$$

- $(-2\rho,\mu)$ and $(\mu \lambda,\mu)$ are ordinary dot products, so the corresponding terms are just powers of q.
- q^H s are products of $q^{\pm H_i}$ s, which are also simple to compute.

Thus, suffices to understand how $e_{\mu\lambda}^*$ and $f_{\lambda\mu}^*$ look.

$$\sum_{\mu} q^{(-2\rho,\mu)} q^{H_{-2\mu}} + \sum_{\mu > \lambda} q^{(\mu-\lambda,\mu)} q^{(-2\rho,\mu)} e^*_{\mu\lambda} q^{H_{-\mu-\lambda}} f^*_{\lambda\mu}.$$

- $(-2\rho,\mu)$ and $(\mu \lambda,\mu)$ are ordinary dot products, so the corresponding terms are just powers of q.
- q^H s are products of $q^{\pm H_i}$ s, which are also simple to compute.

Thus, suffices to understand how $e_{\mu\lambda}^*$ and $f_{\lambda\mu}^*$ look.

The generators E_i s and F_i s are operators that move us between different weight spaces.

Here, $e_{\mu\lambda}$ and $f_{\lambda\mu}$ send us from λ to μ and vice versa. In this case, $e_{\mu\lambda} = E_1 \cdots E_{n-1}$, and $f_{\lambda\mu} = F_{n-1} \cdots F_1$.

A q-deformed pairing

We introduce a function \langle , \rangle , which takes in (product of *F*s and q^H s) and (product of *E*s and q^H s), outputting (rational function in *q*). More formally: $U_q(\mathfrak{b}-) \times U_q(\mathfrak{b}+) \to \mathbb{Q}(q)$.

For the generators, the only nonzero pairings are

$$\langle q^{H_{\alpha}}, q^{H_{\beta}} \rangle = q^{-(\alpha \cdot \beta)}, \quad \langle F_i, E_i \rangle = -\frac{1}{q - q^{-1}},$$

where α and β are linear combinations of the α_i s.

There is also an inductive way to compute things like

 $\langle q^{H_1}F_2F_1, q^{H_2}E_1E_2\rangle,$

involving the **coproduct** of the generators.

We introduce a function \langle , \rangle , which takes in (product of *F*s and q^H s) and (product of *E*s and q^H s), outputting (rational function in *q*). More formally: $U_q(\mathfrak{b}-) \times U_q(\mathfrak{b}+) \to \mathbb{Q}(q)$.

• For the generators, the only nonzero pairings are

$$\langle q^{H_{\alpha}}, q^{H_{\beta}} \rangle = q^{-(\alpha \cdot \beta)}, \quad \langle F_i, E_i \rangle = -\frac{1}{q-q^{-1}},$$

where α and β are linear combinations of the α_i s.

There is also an inductive way to compute things like

 $\langle q^{H_1}F_2F_1, q^{H_2}E_1E_2\rangle,$

involving the **coproduct** of the generators.

We introduce a function \langle , \rangle , which takes in (product of *F*s and q^H s) and (product of *E*s and q^H s), outputting (rational function in *q*). More formally: $U_q(\mathfrak{b}-) \times U_q(\mathfrak{b}+) \to \mathbb{Q}(q)$.

• For the generators, the only nonzero pairings are

$$\langle q^{H_{\alpha}}, q^{H_{\beta}} \rangle = q^{-(\alpha \cdot \beta)}, \quad \langle F_i, E_i \rangle = -\frac{1}{q-q^{-1}},$$

where α and β are linear combinations of the α_i s.

• There is also an inductive way to compute things like

 $\langle q^{H_1}F_2F_1, q^{H_2}E_1E_2 \rangle,$

involving the **coproduct** of the generators.

|御を |原を |原を

•
$$\langle F_1 F_2, E_1 E_2 \rangle = \frac{1}{(q - q^{-1})^2}.$$

• $\langle F_1 F_3 F_3, E_3 E_1 E_3 \rangle = -\frac{1}{(q - q^{-1})^3} (q^2 + 1)$

•
$$\langle F_1F_2F_3, E_1E_2E_2 \rangle = 0.$$

Lemma (L.)

The *q*-pairing of a product of *F*s and a product of *E*s is only nonzero if the indices are permutations of each other, in which case it is $(q - q^{-1})^{-n}$ times a Laurent series in *q*.

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$\langle F_1 F_2, E_1 E_2 \rangle = \frac{1}{(q-q^{-1})^2}$$
.
• $\langle F_1 F_3 F_3, E_3 E_1 E_3 \rangle = -\frac{1}{(q-q^{-1})^3} (q^2 + 1)$.

•
$$\langle F_1F_2F_3, E_1E_2E_2 \rangle = 0.$$

Lemma (L.)

The *q*-pairing of a product of *F*s and a product of *E*s is only nonzero if the indices are permutations of each other, in which case it is $(q - q^{-1})^{-n}$ times a Laurent series in *q*.

・ 「 ト ・ ヨ ト ・ ヨ ト

•
$$\langle F_1F_2, E_1E_2 \rangle = \frac{1}{(q-q^{-1})^2}.$$

• $\langle F_1F_3F_3, E_3E_1E_3 \rangle = -\frac{1}{(q-q^{-1})^3}(q^2+1).$

•
$$\langle F_1F_2F_3, E_1E_2E_2 \rangle = 0.$$

Lemma (L.)

The *q*-pairing of a product of *F*s and a product of *E*s is only nonzero if the indices are permutations of each other, in which case it is $(q - q^{-1})^{-n}$ times a Laurent series in *q*.

・ 「 ト ・ ヨ ト ・ ヨ ト

•
$$\langle F_1F_2, E_1E_2 \rangle = \frac{1}{(q-q^{-1})^2}$$
.
• $\langle F_1F_3F_3, E_3E_1E_3 \rangle = -\frac{1}{(q-q^{-1})^3}(q^2+1)$.

•
$$\langle F_1F_2F_3, E_1E_2E_2 \rangle = 0.$$

Lemma (L.)

The *q*-pairing of a product of *F*s and a product of *E*s is only nonzero if the indices are permutations of each other, in which case it is $(q - q^{-1})^{-n}$ times a Laurent series in *q*.

Finding the dual elements

Example: find **dual element under** \langle , \rangle of $\underline{F_2F_1}$ for n = 3.

- $\{F_1F_2, \underline{F_2F_1}\}$ both have nonzero pairing with both of $\{E_1E_2, E_2E_1\}$. (Call these $\{f_1, f_2\}$ and $\{e_1, e_2\}$.)
- **Dual elements** f_i^* are combinations of the e_i s, such that $\langle f_i, f_j^* \rangle = \delta_{ij}$.
- Form matrix of pairings M such that $M_{ij} = \langle f_i, e_j \rangle$:

$$M = (q - q^{-1})^2 \begin{bmatrix} 1 & 1/q \\ 1/q & 1 \end{bmatrix}$$

• Invert the matrix and look at corresponding (second) row.

$$M^{-1} = (q - q^{-1}) \begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$$

The dual of F_2F_1 is $f^* = (q - q^{-1})(-E_1E_2 + qE_2E_1)$

< ロ > < 同 > < 三 > < 三 >

Finding the dual elements

Example: find **dual element under** \langle , \rangle of $\underline{F_2F_1}$ for n = 3.

- $\{F_1F_2, \underline{F_2F_1}\}$ both have nonzero pairing with both of $\{E_1E_2, E_2E_1\}$. (Call these $\{f_1, \underline{f_2}\}$ and $\{e_1, e_2\}$.)
- **Dual elements** f_i^* are combinations of the e_i s, such that $\langle f_i, f_j^* \rangle = \delta_{ij}$.
- Form matrix of pairings *M* such that $M_{ij} = \langle f_i, e_j \rangle$:

$$M = (q - q^{-1})^2 \begin{bmatrix} 1 & 1/q \\ 1/q & 1 \end{bmatrix}$$

• Invert the matrix and look at corresponding (second) row.

$$M^{-1} = (q - q^{-1}) \begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$$

The dual of F_2F_1 is $f^* = (q - q^{-1})(-E_1E_2 + qE_2E_1)$

< ロ > < 同 > < 三 > < 三 > <

Finding the dual elements

Example: find **dual element under** \langle , \rangle of $\underline{F_2F_1}$ for n = 3.

- $\{F_1F_2, \underline{F_2F_1}\}$ both have nonzero pairing with both of $\{E_1E_2, E_2E_1\}$. (Call these $\{f_1, \underline{f_2}\}$ and $\{e_1, e_2\}$.)
- **Dual elements** f_i^* are combinations of the e_i s, such that $\langle f_i, f_j^* \rangle = \delta_{ij}$.
- Form matrix of pairings M such that $M_{ij} = \langle f_i, e_j \rangle$:

$$M = (q - q^{-1})^2 \begin{bmatrix} 1 & 1/q \\ 1/q & 1 \end{bmatrix}$$

• Invert the matrix and look at corresponding (second) row.

$$M^{-1} = (q - q^{-1}) \begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$$

The dual of F_2F_1 is $f^* = (q-q^{-1})(-E_1E_2+qE_2E_1)$

Example: find **dual element under** \langle , \rangle of $\underline{F_2F_1}$ for n = 3.

- $\{F_1F_2, \underline{F_2F_1}\}$ both have nonzero pairing with both of $\{E_1E_2, E_2E_1\}$. (Call these $\{f_1, \underline{f_2}\}$ and $\{e_1, e_2\}$.)
- Dual elements f_i^* are combinations of the e_i s, such that $\langle f_i, f_j^* \rangle = \delta_{ij}$.
- Form matrix of pairings M such that $M_{ij} = \langle f_i, e_j \rangle$:

$$M=(q-q^{-1})^2egin{bmatrix} 1&1/q\1/q&1\end{bmatrix}$$

• Invert the matrix and look at corresponding (second) row.

$$M^{-1} = (q - q^{-1}) \begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$$

The dual of F_2F_1 is $f^* = (q - q^{-1})(-E_1E_2 + qE_2E_1)$

Example: find **dual element under** \langle , \rangle of $\underline{F_2F_1}$ for n = 3.

- $\{F_1F_2, \underline{F_2F_1}\}$ both have nonzero pairing with both of $\{E_1E_2, E_2E_1\}$. (Call these $\{f_1, \underline{f_2}\}$ and $\{e_1, e_2\}$.)
- Dual elements f_i^* are combinations of the e_i s, such that $\langle f_i, f_j^* \rangle = \delta_{ij}$.
- Form matrix of pairings M such that $M_{ij} = \langle f_i, e_j \rangle$:

$$M=(q-q^{-1})^2egin{bmatrix} 1&1/q\1/q&1\end{bmatrix}$$

• Invert the matrix and look at corresponding (second) row.

$$M^{-1} = (q - q^{-1}) \begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$$

The dual of
$$F_2F_1$$
 is $f^* = (q - q^{-1})(-E_1E_2 + qE_2E_1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two main reasons this is more complicated than the other steps:

- Matrix *M* needs to be **invertible**.
 - Need to make sure different f_is and e_is linearly independent
 Serre relation makes this hard: for example,

$$E_1^2 E_2 + E_2 E_1^2 = (1+q)E_1E_2E_1$$

Larger sets of indices mean the dimensions of *M* are larger.
Inverting symbolic matrices takes time (with a computer)

3 D (3 D)
Two main reasons this is more complicated than the other steps:

- Matrix *M* needs to be **invertible**.
 - Need to make sure different f_i s and e_i s linearly independent
 - Serre relation makes this hard: for example,

$$E_1^2 E_2 + E_2 E_1^2 = (1+q)E_1E_2E_1$$

Larger sets of indices mean the **dimensions** of *M* are larger.
Inverting symbolic matrices takes time (with a computer)

Two main reasons this is more complicated than the other steps:

- Matrix *M* needs to be **invertible**.
 - Need to make sure different f_i s and e_i s linearly independent
 - Serre relation makes this hard: for example,

$$E_1^2 E_2 + E_2 E_1^2 = (1+q)E_1E_2E_1$$

• Larger sets of indices mean the **dimensions** of *M* are larger.

• Inverting symbolic matrices takes time (with a computer)

Two main reasons this is more complicated than the other steps:

- Matrix *M* needs to be **invertible**.
 - Need to make sure different f_i s and e_i s linearly independent
 - Serre relation makes this hard: for example,

$$E_1^2 E_2 + E_2 E_1^2 = (1+q)E_1E_2E_1$$

- Larger sets of indices mean the **dimensions** of *M* are larger.
 - Inverting symbolic matrices takes time (with a computer)

The central element of $U_q(\mathfrak{so}_6)$

Let $r = q - \frac{1}{q}$, and write (for example) $E_1 E_2 E_3$ as E_{123} .

Theorem (L.)

The following element of the quantum group $U_q(\mathfrak{so}_6)$ is central:

$$\begin{split} q^{-4-2H_1-H_2-H_3} + q^{-2-H_2-H_3} + q^{H_2-H_3} + q^{H_3-H_2} + q^{2+H_2+H_3} + q^{4+2H_1+H_2+H_3} + \frac{r^2}{q^3} F_1 q^{-H_1-H_2-H_3} E_1 \\ & + \frac{r^2}{q} F_2 q^{-H_3} E_2 - \frac{r^2}{q} F_3 q^{-H_2} E_3 + r^2 q F_2 q^{H_3} E_2 - r^2 q F_3 q^{H_2} E_3 + r^2 q^3 F_1 q^{H_1+H_2+H_3} E_1 \\ & + \frac{r^2}{q^3} (q F_{12} - F_{21}) q^{-H_1-H_3} (q E_{21} - E_{12}) - \frac{r^2}{q^3} (q F_{13} - F_{31}) q^{-H_1-H_2} (q E_{31} - E_{13}) \\ & + r^2 q (q F_{21} - F_{12}) q^{H_1+H_3} (q E_{12} - E_{21}) - r^2 q (q F_{31} - F_{13}) q^{H_1+H_2} (q E_{13} - E_{31}) \\ & - \frac{r^2}{q^3} (q^2 F_{123} - q F_{213} - q F_{312} - q F_{312} + F_{231}) q^{-H_1} (q^2 E_{231} - q E_{213} - q E_{213} + E_{123}) \\ & - \frac{r^2}{q^2} (q^2 F_{231} - q F_{312} - q F_{213} + F_{123}) q^{H_1} (q^2 E_{123} - q E_{213} - q E_{312} - q E_{312} + E_{231}) \\ & - \frac{r^4}{q^2} ((q^2 + 1) F_{1231} - q F_{1312} - q F_{2131}) ((q^2 + 1) E_{1231} - q E_{1312} - q E_{2131}) \\ & - r^4 F_2 F_3 E_2 E_3. \end{split}$$

This element acts as a constant $(q^6 + q^2 + 2 + q^{-2} + q^{-6})$ times the identity matrix in the fundamental representation.

イロト イポト イヨト イヨト

The central element of $U_q(\mathfrak{so}_8)$

Theorem (L.)

The following element of the quantum group $U_q(\mathfrak{so}_8)$ is central:

$$\begin{split} q^{-6-2H_1-2H_2-H_3-H_4} + q^{-4-2H_2-H_3-H_4} + q^{-2-H_3-H_4} + q^{H_3-H_4} \\ + q^{H_4-H_3} + q^{2+H_3+H_4} + q^{4+2H_2+H_3+H_4} + q^{6+2H_1+2H_2+H_3+H_4} \\ + \frac{r^2}{q^5} F_1 q^{-H_1-2H_2-H_3-H_4} E_1 + \frac{r^2}{q^5} (q^{F_{12}} - F_{21}) q^{-H_1-H_2-H_3-H_4} (qE_{21} - E_{12}) \\ + \frac{r^2}{q^5} (q^2 F_{123} - qF_{132} - qF_{213} + F_{321}) q^{-H_1-H_2-H_4} (q^2 E_{321} - qE_{213} - qE_{132} + E_{123}) \\ - \frac{r^2}{q^5} (q^2 F_{124} - qF_{142} - qF_{241} + F_{421}q^{-H_1-H_2-H_3} (q^2 E_{421} - qE_{241} - qE_{142} + E_{124}) \\ - \frac{r^2}{q^5} (q^2 F_{124} - qF_{142} - qF_{241} + F_{421}q^{-H_1-H_2-H_3} (q^2 E_{421} - qE_{241} - qE_{142} + E_{124}) \\ - \frac{r^2}{q^5} (q^2 F_{23} - F_{32}) q^{-H_2-H_4} (qE_{32} - E_{23}) - \frac{r^2}{q^3} (qF_{24} - F_{42}) q^{-H_2-H_3} (qE_{42} - E_{24}) \\ - \frac{r^2}{q^3} (q^2 F_{234} - qF_{324} - qF_{423} + F_{432}) q^{-H_2} (q^2 E_{432} - qE_{324} - qE_{423} + E_{234}) \\ - \frac{r^2}{q^3} (q^2 F_{234} - qF_{324} - qF_{423} + F_{432}) q^{-H_2} (q^2 E_{432} - qE_{324} - qE_{423} + E_{234}) \\ - \frac{r^2}{q^3} (q^2 F_{234} - qF_{324} - qF_{3242} - qF_{2423}) ((q^2 + 1)E_{342} - qE_{3242} - qE_{324} - qE_{3242} - qE_{3242} - qE_{3242} - qE_{3242} - qE_{3242} - qE_{3242} - qE_{324} - qE_{3242} - qE_{324} - qE_$$

Theorem

(Here is the rest of the element.) $\cdots - r^{4}F_{3}F_{4}E_{4}E_{3} - \frac{r^{2}}{q}(q^{2}F_{432} - qF_{324} - qF_{423} + F_{234})q^{H_{2}}(q^{2}E_{234} - qE_{324} - qE_{423} + E_{432}) \\ - \frac{r^{2}}{q}A_{3}q^{H_{1}+H_{2}}A_{2} - r^{2}qF_{4}q^{H_{3}}E_{4} - r^{2}q(qF_{42} - F_{24})q^{H_{2}+H_{3}}(qE_{24} - E_{42}) \\ - r^{2}q(q^{2}F_{421} - qF_{241} - qF_{142} + F_{124})q^{H_{1}+H_{2}+H_{3}}(q^{2}E_{124} - qE_{142} - qE_{241} + E_{421}) \\ + r^{2}qF_{3}q^{H_{4}}E_{3} + r^{2}q(qF_{32} - F_{32})q^{H_{2}+H_{4}}(qE_{23} - E_{32}) \\ + r^{2}q(q^{2}F_{321} - qF_{213} - qF_{132} + F_{123})q^{H_{1}+H_{2}+H_{4}}(q^{2}E_{123} - qE_{132} - qE_{132} - qE_{132} + E_{321}) \\ + r^{2}q^{3}F_{2}q^{H_{2}+H_{3}+H_{4}}E_{2} + r^{2}q^{3}(qF_{21} - F_{12})q^{H_{1}+H_{2}+H_{3}+H_{4}}(qE_{12} - E_{21}) + r^{2}q^{5}F_{1}q^{H_{1}+2H_{2}+H_{3}+H_{4}}E_{1},$

where the 10 boxed A_i is are omitted for brevity. This element acts as $q^8 + q^4 + q^2 + 2 + q^{-2} + q^{-4} + q^{-8}$ times the identity matrix in the fundamental representation.

Proposition (L.) Suppose each index only shows up once in an element of $e_{\mu\lambda}$ or $f_{\lambda\mu}$. Then the matrix M^{-1} can be inductively computed by tensoring the inverse matrix from a smaller set of indices repeatedly with $\begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$.

- Dual of E_1 is $(q q^{-1})F_1$.
- Dual of $E_1 E_2$ is $(q q^{-1})(qF_1F_2 F_2F_1)$.
- Dual of $E_1E_2E_3$ is $(q-q^{-1})(q^2F_1F_2F_3-qF_1F_3F_2-qF_2F_1F_3+F_3F_2F_1)$.

Notably, the dimension (number of rows) of M is always a power of 2.

Proposition (L.) Suppose each index only shows up once in an element of $e_{\mu\lambda}$ or $f_{\lambda\mu}$. Then the matrix M^{-1} can be inductively computed by tensoring the inverse matrix from a smaller set of indices repeatedly with $\begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$.

• Dual of E_1 is $(q - q^{-1})F_1$.

• Dual of E_1E_2 is $(q - q^{-1})(qF_1F_2 - F_2F_1)$.

• Dual of $E_1E_2E_3$ is $(q-q^{-1})(q^2F_1F_2F_3-qF_1F_3F_2-qF_2F_1F_3+F_3F_2F_1)$.

Notably, the dimension (number of rows) of M is always a power of 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (L.) Suppose each index only shows up once in an element of $e_{\mu\lambda}$ or $f_{\lambda\mu}$. Then the matrix M^{-1} can be inductively computed by tensoring the inverse matrix from a smaller set of indices repeatedly with $\begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$.

- Dual of E_1 is $(q q^{-1})F_1$.
- Dual of E_1E_2 is $(q q^{-1})(qF_1F_2 F_2F_1)$.

• Dual of $E_1E_2E_3$ is $(q-q^{-1})(q^2F_1F_2F_3-qF_1F_3F_2-qF_2F_1F_3+F_3F_2F_1)$.

Notably, the dimension (number of rows) of M is always a power of 2.

Proposition (L.) Suppose each index only shows up once in an element of $e_{\mu\lambda}$ or $f_{\lambda\mu}$. Then the matrix M^{-1} can be inductively computed by tensoring the inverse matrix from a smaller set of indices repeatedly with $\begin{bmatrix} q & -1 \\ -1 & q \end{bmatrix}$.

- Dual of E_1 is $(q q^{-1})F_1$.
- Dual of E_1E_2 is $(q q^{-1})(qF_1F_2 F_2F_1)$.
- Dual of $E_1E_2E_3$ is $(q-q^{-1})(q^2F_1F_2F_3-qF_1F_3F_2-qF_2F_1F_3+F_3F_2F_1)$.

Notably, the dimension (number of rows) of *M* is always a power of 2.

|田 | | 田 | (田)

Proposition (L.) Suppose each index only shows up once in an element of $e_{\mu\lambda}$ or $f_{\lambda\mu}$. Then the matrix M^{-1} can be inductively computed by tensoring the inverse matrix from a smaller set of indices repeatedly with $\begin{bmatrix} q & -1 \\ -1 & a \end{bmatrix}$.

- Dual of E_1 is $(q q^{-1})F_1$.
- Dual of E_1E_2 is $(q q^{-1})(qF_1F_2 F_2F_1)$.
- Dual of $E_1E_2E_3$ is $(q-q^{-1})(q^2F_1F_2F_3-qF_1F_3F_2-qF_2F_1F_3+F_3F_2F_1)$.

Notably, the dimension (number of rows) of M is always a power of 2.

Dual elements for general n, continued

• The above strategy doesn't work for repeated indices.

• However, the dimensions of *M* for small *n* show a pattern.

- The dimension for indices (2, 2, 3, 4) in n = 4 is 5.
- The dimensions for (1,2,2,3,4) and (1,1,2,2,3,4) are 15 and 20.

Conjecture

Suppose the index $x_1 - 1$ is being added to a set of indices $S = (x_1, \dots, x_m)$ of dimension d, where $x_1 \leq \dots \leq x_m$ and $x_1 \leq \dots \leq x_m$

- If x_1 appears twice and we add $(x_1 1)$ once, the dimension becomes 3d.
- If x_1 appears twice and we add $(x_1 1)$ twice, the dimension becomes 4*d*.

Suppose M is the a pairing matrix for some basis for S. Then we can find a 3×3 matrix M_1 and a 4×4 matrix M_2 , such that the new pairing matrix M' is $M \otimes M_1$ in the first case and $M \otimes M_2$ in the second case.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dual elements for general n, continued

- The above strategy doesn't work for repeated indices.
- However, the dimensions of M for small n show a pattern.
 - The dimension for indices (2, 2, 3, 4) in n = 4 is 5.
 - The dimensions for (1, 2, 2, 3, 4) and (1, 1, 2, 2, 3, 4) are 15 and 20.

Conjecture

Suppose the index $x_1 - 1$ is being added to a set of indices $S = (x_1, \dots, x_m)$ of dimension d, where $x_1 \leq \dots \leq x_m$ and $x_1 \leq \dots \leq x_m$

- If x_1 appears twice and we add $(x_1 1)$ once, the dimension becomes 3d.
- If x_1 appears twice and we add $(x_1 1)$ twice, the dimension becomes 4*d*.

Suppose M is the a pairing matrix for some basis for S. Then we can find a 3×3 matrix M_1 and a 4×4 matrix M_2 , such that the new pairing matrix M' is $M \otimes M_1$ in the first case and $M \otimes M_2$ in the second case.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Dual elements for general n, continued

- The above strategy doesn't work for repeated indices.
- However, the dimensions of *M* for small *n* show a pattern.
 - The dimension for indices (2, 2, 3, 4) in n = 4 is 5.
 - The dimensions for (1,2,2,3,4) and (1,1,2,2,3,4) are 15 and 20.

Conjecture

Suppose the index $x_1 - 1$ is being added to a set of indices $S = (x_1, \dots, x_m)$ of dimension d, where $x_1 \leq \dots \leq x_m$ and $x_1 \leq n - 2$.

- If x_1 appears twice and we add $(x_1 1)$ once, the dimension becomes 3d.
- If x_1 appears twice and we add $(x_1 1)$ twice, the dimension becomes 4d.

Suppose *M* is the a pairing matrix for some basis for *S*. Then we can find a 3×3 matrix M_1 and a 4×4 matrix M_2 , such that the new pairing matrix M' is $M \otimes M_1$ in the first case and $M \otimes M_2$ in the second case.

In order to extract the probabilistic interpretation:

• Replace each generator with its coproduct. For example,

 $E_i \to E_i \otimes I + q^{H_i} \otimes E_i.$

(This is similar to the symmetric case, where $E_i \rightarrow E_i \otimes I + I \otimes E_i$.)

- End up with a $4n^2 \times 4n^2$ matrix with coefficients in terms of q.
- In other words, every single generator that showed up in the central elements earlier is represented as a $4n^2 \times 4n^2$ matrix.

In order to extract the probabilistic interpretation:

• Replace each generator with its coproduct. For example,

$$E_i \to E_i \otimes I + q^{H_i} \otimes E_i.$$

(This is similar to the symmetric case, where $E_i \rightarrow E_i \otimes I + I \otimes E_i$.)

- End up with a $4n^2 \times 4n^2$ matrix with coefficients in terms of q.
- In other words, every single generator that showed up in the central elements earlier is represented as a $4n^2 \times 4n^2$ matrix.

In order to extract the probabilistic interpretation:

• Replace each generator with its coproduct. For example,

$$E_i \to E_i \otimes I + q^{H_i} \otimes E_i.$$

(This is similar to the symmetric case, where $E_i \rightarrow E_i \otimes I + I \otimes E_i$.)

- End up with a $4n^2 \times 4n^2$ matrix with coefficients in terms of q.
- In other words, every single generator that showed up in the central elements earlier is represented as a $4n^2 \times 4n^2$ matrix.

The resulting $4n^2 \times 4n^2$ matrix is not yet a generator matrix, just like in the symmetric case.

- Key idea: if Mv = 0, where v = (v₁, · · · , v_N), we can conjugate by a diagonal matrix D = diag(v₁, · · · , v_N).
- This makes all rows sum to 0.

This procedure differs from the alternative method of subtracting a diagonal matrix and then negating rows.

The resulting $4n^2 \times 4n^2$ matrix is not yet a generator matrix, just like in the symmetric case.

- Key idea: if Mv = 0, where v = (v₁, ··· , v_N), we can conjugate by a diagonal matrix D = diag(v₁, ··· , v_N).
- This makes all rows sum to 0.

This procedure differs from the alternative method of subtracting a diagonal matrix and then negating rows.

The resulting $4n^2 \times 4n^2$ matrix is not yet a generator matrix, just like in the symmetric case.

- Key idea: if Mv = 0, where v = (v₁, ··· , v_N), we can conjugate by a diagonal matrix D = diag(v₁, ··· , v_N).
- This makes all rows sum to 0.

This procedure differs from the alternative method of subtracting a diagonal matrix and then negating rows.

Recall these properties of the generator matrix in the symmetric case:

- All nonzero off-diagonal entries equal
- 2n absorbing states, 2n maximal-choice states, all others pairwise.

Similar properties can be observed at least for $U_q(\mathfrak{so}_6)$ and $U_q(\mathfrak{so}_8)$:

- The absorbing and pairwise states interact in the same ways (except the jump rates differ by a factor of q^2 , causing **drift**).
- However, only 4 of the 2*n* maximal-choice states are reachable from each other (finite jump rates). No fission or fusion occurs.

• • = • • = •

Recall these properties of the generator matrix in the symmetric case:

- All nonzero off-diagonal entries equal
- 2n absorbing states, 2n maximal-choice states, all others pairwise.

Similar properties can be observed at least for $U_q(\mathfrak{so}_6)$ and $U_q(\mathfrak{so}_8)$:

- The absorbing and pairwise states interact in the same ways (except the jump rates differ by a factor of q^2 , causing **drift**).
- However, only 4 of the 2*n* maximal-choice states are reachable from each other (finite jump rates). No fission or fusion occurs.

イロト イヨト イヨト イヨト

Recall these properties of the generator matrix in the symmetric case:

- All nonzero off-diagonal entries equal
- 2n absorbing states, 2n maximal-choice states, all others pairwise.

Similar properties can be observed at least for $U_q(\mathfrak{so}_6)$ and $U_q(\mathfrak{so}_8)$:

- The absorbing and pairwise states interact in the same ways (except the jump rates differ by a factor of q^2 , causing **drift**).
- However, only 4 of the 2*n* maximal-choice states are reachable from each other (finite jump rates). No fission or fusion occurs.

Patterns in the coefficients

Here is the generator submatrix for n = 3:

Three different groups: red, blue, green

• Symmetry between q and $\frac{1}{q}$.

• Limit as $q \rightarrow 1$.

Patterns in the coefficients

Here is the generator submatrix for n = 3:

$$\begin{array}{c} \displaystyle \frac{1}{q^6} \begin{bmatrix} -1-2q^2+q^6-q^8-q^{10} & q^2(2-q^4+q^6) & (q^4-1)^2 & q^4(2-q^4+q^6) \\ q^4(2-q^4+q^6) & -1+2q^4+q^6-2q^{10} & 1-q^2+2q^6 & q^2(q^4-1)^2 \\ q^4(q^4-1)^2 & q^2(1-q^2+2q^6) & -q^2-q^4+q^6-2q^{10}-q^{12} & q^4(1-q^2+2q^6) \\ q^6(2-q^4+q^6) & q^2(q^4-1)^2 & q^2(1-q^2+2q^6) & -2q^2+q^4-2q^8-q^{12} \end{bmatrix}$$

- Three different groups: red, blue, green
- Symmetry between q and $\frac{1}{q}$.
- Limit as $q \rightarrow 1$.

A special thanks to:

- Professor Jeffrey Kuan,
- Our TA's, Ola Sobieska and Zhengye Zhou,
- The NSF (DMS-1757872),
- and Texas A&M University.

э

▶ ∢ ⊒ ▶

J. Jantzen.

Lectures on Quantum Groups.

DIMAC Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society.

J. Kuan.

Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two.

J. Phys. A, 49(11):115002, 29, 2016.