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Partitions

Definition
A partition of a positive integer n is a multiset {1, A2, ..., Ac} of
positive integers such that
00 A < <<
@ M+ X+ + A =n.
We define the rank of this partition as \x — k.
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Rank Inequalities

Let Ne(n) and No(n) be the number of partitions of n with even
and odd rank, respectively.

Conjecture (Hou and Jagadeesan [2], 2017)

e Ifa,b>11, then Ne(a)Ne(b) > Ne(a+ b).
e Ifa,b> 12, then No(a)No(b) > No(a+ b).
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The f(q) Mock Theta Function

A result of Ramanujan relates the difference of these functions to
the Ramanujan mock theta function

n?

q
flq) = 1+Z (1+q2(1+g)2-(1+q)2
=1+ Z No(n))q" = Za(n)q”.
n=0
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An Infinite Series for a(n)

A remarkable theorem of Bringmann and Ono [4] shows that

1 k
(—~D)% ) Agy (n — KOHEDT)
a(n) =m(24n — 1) i Z <k ! )
k=1
/ my24n — 1
2 12k

2

However, it is difficult to bound this formula since the sum does
not converge absolutely.
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An Effective Bound for a(n)

Theorem (Gomez-Zhu)
Let D, = —24n+1 and let I(n) = w+\/|D,|/6. Then for all n > 1,

a(n) = (-1)"t1 e'(N/2 1 E(n)

V6!(n)
where
|E(n)| < (4.30 x 10%3)29(")| D, 2¢/(")/3
with .
an) = | log |ogai(n|l)n—|)1.1714y'
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Quadratic Forms

A positive definite binary quadratic form is a function of the form
Q(X,Y) = aX? 4 bXY + cY? for integers a, b, c with a > 0.

The discriminant of this form is D = b? — 4ac and we call the
form primitive if gcd(a, b,c) = 1.

We define Qp y as the set of quadratic forms with discriminant
D <0,a=0 (mod N)and b=1 (mod 2N). Furthermore, we
define QR as the subset of Qp y that consists of primitive forms.
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Heegner Points

We define the congruence subgroup of SL(Z)

ro(N)z{C’ Z):czo (mod N)}.

The group INo(N) acts on Qp ny with the set of orbits Qp n/To(N)
and similarly acts on Q'Y with the set of orbits Q'Y /To(N).
The number of orbits in this last set is denoted by the class

number h(D).

To each form @ € Qp n, we can associate its Heegner point Tq
which is the root of Q(X,1) with positive imaginary part.
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The Brunier-Schwagenscheidt Formula

Consider the modular form:

F(z)=q ' —4-83g-296¢"+---= Y _ a(n)q"
—
where g := °™2.

Theorem (Brunier-Schwagenscheidt)

For n > 1, we have

1
a(n) = —————=Im(S(n
(n) NN (S(n))

where

S(n) = > F(7q).

[Q1€CD, 6/T0(6)

v
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Analyzing S(n)

Now, we decompose the function into

S(m= Y  F(r)

[QI€QD,,6/T0(6)

=> ew) > Flrolrq)

u>0 prim
u2|D,, [Q]EQDn/“2»6

where £(u) = £1 and ¢ are certain right coset representatives of
Mo(6) in SLo(Z).
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Fourier Expansion of F(z)

We find the fourier expansion of F(z) as

F(10(2)) = Coe(—2/hq) — 4B(hq) + Y dnqa(n)e(nz/hq)
n=1

where (g and ¢, g are specific sixth roots of unity,
hg € {1,2,3,6}, and S(hg) = £1.
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Analyzing S(n)

We split this sum up into a main term and an error term as

S(my=Y e Y Flralr)

u>0 Qe QP"im

LI2|Dn Dn/u2,6
= Y Coe(—7q/hq) + Ea(n) + Ex(n).
QeQp™

Now, we can analyze the main term, which is a finite sum to get

S(n) = (—1)"iv6exp(m+/|Dn|/12) + E1(n) + Ex(n) + E3(n).
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Bounding the Error Term

The error terms earlier are given by:

Ei(n)= ) e(u) Y (ee(~a/hq).

u>1 prim
U2‘Dn Q€ QDn/u26

Ex(n) :=4B(hg) > e(u)h(Dn/u? +Z > e(u)dnqa(n)e(no/hq),

u>0 n=1 u>0
UZ‘Dn U2|Dn
> Cee(—1q/hq)-
Qe
aghg>18

The functions E;(n) and E3(n) are bounded by the same
techniques as for the main term.
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Bounding E;(n)

Ex(n) = 4B(hq) D (u)h(Dy/u? +Z > e(u)énga(n)e(nmo/hg).
B A

Proposition (Gomez-Zhu)

For all n > 1,

|la(n)| < Ce*™V™ where C := 8V/6m>/% + 16m2¢?(3/2)
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Effective Bound for a(n)

Theorem (Gomez-Zhu)
Let D, = —24n+1 and let I(n) = w+\/|D,|/6. Then for all n > 1,

a(n) = (-1)"t1 e'(N/2 1 E(n)

V6!(n)
where
|E(n)| < (4.30 x 10%3)29(")| D, 2¢/(")/3
with .
an) = | log |ogai(n|l)n—|)1.1714y'

Eric Zhu Bounds for Coefficients of the f(q) Mock Theta Function



References

[1] C. Bessenrodt and K. Ono, Maximal multiplicative properties
of partitions, Annals of Combinatorics 20 (2016) 59-64.

[2] E. Hou and M. Jagadeesan, Dyson’s partition ranks and their
multiplicative extensions. Ramanujan J. 45 (2018) 817-839.

[3] M. Locus Dawsey and R. Masri, Effective bounds for the
Andrews spt-function. Forum Mathematicum 31 (2019)
743-767.

[4] K. Bringmann and K. Ono, The f(q) mock theta function
conjecture and partition ranks. Invent. Math. 165 (2006),
pages 243-266.

Eric Zhu Bounds for Coefficients of the f(q) Mock Theta Function



