SOLVING TRINOMIAL EQUATIONS OVER R IN POLYNOMIAL-TIME
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ABSTRACT. We work to develop an algorithm to prove that any univariate polynomial
f € Z|z] with exactly 3 monomial terms, degree d, and all its coefficients having absolute
value at most H, can be solved over R in deterministic time logo(l)(dH ) in the classical
Turing model. (The best previous deterministic bit complexity bounds were exponential
in logd.) In particular, our underlying algorithm correctly counts the number of roots in
R, and for each such root generates an approximation in Q that converges at a rate of
(1/2)9%2™) after n steps of Newton iteration. As a consequence, we work to affirmatively
answer an earlier question of Koiran: One can evaluate the sign of a trinomial at a rational
point in deterministic time polynomial in the input size.

1. INTRODUCTION

The problem of quickly solving systems of polynomial equations is a critical one that arises
in several areas of study. The real case permeates all of non-linear optimization as well as
numerous problems in engineering. As such, it is important to understand the complexity
of solving systems of polynomial equations over local fields. Furthermore, the complexity
of solving structured systems — such as those with a fixed number of monomial terms or
invariance with respect to a group action — arises naturally in many computational geometric
applications and is closely related to a deeper understanding of circuit complexity. Therefore,
if we wish to fully understand the complexity of solving sparse polynomial systems over the
real numbers, we should at least be able to settle the univariate case.

First, recall that for any function f analytic on R, the corresponding Newton endomor-
phism is Ny(z) = z — ]{c,(é)), and the corresponding sequence of Newton iterates of a zp € R
is the sequence (z;)°, where z;1 := N¢(z;) for all i > 0.

We further recall an approximate root (in the sense of Smale) z of a polynomial f is such
that for some root ( of f, the corresponding sequence of Newton iterates with zy = 2z and

Zit1 = Nf(ZZ> satisfy
1 201
s-d<(3) l-o

for all + > 0. This notion provides an efficient encoding of an approximation that can be
quickly tuned to any desired accuracy.

Our main result concerns univariate trinomials. We work to develop an algorithm that can
find a set of approximate roots of a univariate trinomial f in deterministic time logarithmic
to the product of the degree and maximum of the absolute value of the coefficients of f.

The following conjecture proposes an algorithm we hope to further develop in a follow up
to this report.

Conjecture 1.1. For any input univariate trinomial f € Z[zx] with degree d and all its coef-

ficients having absolute value at most H, we can find in deterministic time O(logo(l)(dH)>
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a1 m
b b

all i,j>1.

a set { }C@ such that: zo:=a;/b; is an approximate root for some root ; ER for

Applying the following remark, we can find an approximate root of f in deterministic time
polynomial to the input size of f.

Remark 1.2. Defining the input size of a univariate polynomial f(z) := Y_r_, c;z% € Z[]

as v log((|ei| + 2)(las| +2)) we see that Conjecture 1.1 implies that one can solve real
univariate trinomial equations in deterministic time polynomial in the input size.

Our work in Section 3 provides the preliminary steps to constructing an algorithm to
prove Conjecture 1.1. An analogue of Conjecture 1.1 in fact holds for any field K €
{Q2,Q3,Qs, ...} as well, as presented in a precursor to this report [7].

The complexity bound from Conjecture 1.1 appears to be new, despite earlier work on the
arithmetic complexity of approximating [6, 8] and counting [T, 2] real roots of trinomials. In
particular, a proof of Conjecture would settle a question of Koiran from [2] on the bit
complexity of solving trinomial equations over the reals. One should observe that the best
general bit complexity bounds for solving real univariate polynomials are super-linear in d
and work in terms of e-approximation, thus requiring an extra parameter depending on root
separation (which is not known a priori): see, e.g., [3] 4.

In order to efficiently find these approximate roots, we use a novel technique that applies
the theory of A-hypergeometric functions in conjunction with the techniques of rescaling to
simplify our problem.

2. BACKGROUND

2.1. Solving Binomials. Counting real roots for the binomial ¢; + cox? (with ¢1,c0 € R)
depends only on the signs of the ¢; and the parity of d. (In particular, real binomials have at
most 3 real roots, e.g., 23 —z.) We now quickly review the bit complexity of finding rational
approximate roots (in the sense of Smale) for coz? — ¢; =0 with d € N and ¢y, ¢, € N: The

Intermediate Value Theorem guarantees the existence of a root in the open interval <0, 2—;)
So we can check the sign of f at the midpoint of this interval and then reduce to either the

left interval (O, 2%), or the right interval (2%2, %), and proceed recursively. This sign can

be computed efficiently by approximating d log x +log(cy) —log(c) to log(dH)°™ many bits,
thanks to Baker’s Theorem on Linear Forms in Logarithms. Logarithms can be efficiently
approximated via AGM Iteration, (see, e.g., [1]).

Now, the number of such bisections we need to do is provably small, thanks to earlier work
of Smale [9] (refined later by Ye [10]): We only need to find an approximation within distance
2|c|"/?/(d — 1) of a root in order for Newton iteration to converge quickly. Furthermore, the
number of bit operations needed at each midpoint sign check is O(log(dH)). So we obtain
the following result:

Theorem 2.1. Suppose [ € Z[z] is a univariate binomial of degree d with coefficients of
absolute value at most H. Then, in time log(dH)O(l), we can count exactly how many real
roots f has and, for any nonzero real root ¢ of f, find a 2o €Q, with (zo>0 and bit-length
O(log(dH)), that is an approzimate root in the sense of Smale.
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2.2. Rescaling. The technique of rescaling provides a way to reduce the problem of solving
for the roots of a polynomial with ¢ variable coefficients to the roots of a polynomial with ¢ —2
variable coefficients and two constant coefficients. If we let f(x1) = ¢ 4 cox(? + 327 € Z[x4]
be a univariate trinomial with cicoc3 # 0 and asz > as, we can use this method to simplify
the problem of finding the real roots f to finding the real roots of the rescaled polynomial
f(z1) =1+ ca” 4+ 2} where ¢ # 0, n > m, and ged(m,n) = 1.

We summarize the techniques described in Passare [5]. Let ¢, 2, c5 € Z\{0} and as,a3 € N
with as > as. Consider the trinomial equation

(1) ¢+ cx™ + csx®® =0

We first make any necessary variable substitution so that the exponents as and a3 are
reduced to exponents m and n where ged(m,n) = 1. Then, we may express the solution z as
a function of the coefficients, namely z(cy, ¢o, ¢3). We can then make use of the following two
homogeneity relations associated with z: (1) for any non-zero scalar Ay, z(Aoc1, AoCa, Aoc3) =
x(cy, ¢y, ¢3), and (2) for any non-zero scalar A;, x(Ney, A'ey, Aies) = Az (e, e, ¢3).

Fix non-zero constants Ay and A\; satisfying

)\0)\(1) = C and )\0)\711 = C3

so that Ao f(Ax) = 14+ XA cea™ + 2™ = f(x) where ¢ = MA"cy # 0. Hence, if ¢ is a root
of X\of(A1z) then A\ is a root of f.

In our algorithm, this technique allows us to simplify the application of the theory of
A-hypergeometric series.

2.3. A-Hypergeometric Series. Consider our rescaled polynomial
flxy) =14 ca* + 2

where ¢ # 0, 0 < m < n, and ged(m,n) = 1. We briefly summarize a special case of
A-hypergeometric series associated with the complex roots of f, as a function of the middle
coefficient c¢. These series date back to 1757 work of Johann Lambert for the special case
m=1. Several authors have since extended these series in various directions. Passare and
Tsikh’s paper [5] is the most relevant for our development here.

The union of the domains of convergence of these series will turn out to be all ¢ with |c|
distinct from

= n (>1).

n—m
m

Tmn

33

(n—m) =

As ged(m,n) = 1, we have three possible cases for m and n: m and n are both odd, m
is even and n is odd, or m is odd and n is even. Each case and its corresponding series is
detailed in Table 1. In each case, we have roots r1, o, and r3. A blank cell means that no
other real root exists.
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m n c sign(c) 1 T2 T3
odd odd |¢| < 7rmn + | Tmia(c)

le| > rmn + Tiow ()

|C| > T'mn - JJ]OW(C) 1:%}11(0) QIhl(C)
even odd |c| < 7T + | mia(c)

le| > rmn + Tyi(c)

le| > rmn - 2hi(€)  1T10w(C)  2Tiow(C)
odd even |c¢|<rm, =

le| > rmn + Tiow(€)  Tni(c)

mk k— m — in
Tmia(c) = (1) 1—1—2( H1+kj J )ck]

1 "k S L+ kn— jm 1\"
$W@:&m]+§:<kk E J j>(wm)]
T > —1)k e 4 i (n—m) — 1 1 F
ni(c) = (=1)c/m [1 —; (% H 4 ; ") ) (cn/(n—m>) ]
00 _1\—nk k—1 m i(n —m) — k
1@ni(e) = (=1 [1 - ; (lf((n%)m)k . li[l e J ) 1) (|c\“/(1nm)) ]
S 1 Jrkm+jn—m) -1 1\
2Zni(c) = |c| [1 ; _k(n—m)k ]1;[1 j ) (‘c‘n/(nm)> ]

i N ) T AW AR TR
1[E10W(C) = |C|1/m 1 + Z ( kmk . ]~_[1 ] (|C|n/m>
=
k

—1 . k
. 1 1 14+ kn—jm 1
ow = — |1 ’ -
0= e 1+ 3 (e 1577 () |

TABLE 1. Table of all possible A-hypergeometric solutions to a trinomial of
the form 1+ cax™ 4 x"

We can apply A-hypergeometric series to find an approximate root of our rescaled poly-
nomial. Our main work focuses on finding the number of terms one needs to evaluate of the
preceding series in order to yield an estimate that is an approximate root of f. With that
number, we can work backwards from rescaling to find an approximate root of our input
polynomial.

2.4. A Chasm at Tetranomials. We apply the techniques of A-hypergeometric to effi-
ciently find approximate roots of univariate trinomials. A natural question arises if this
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technique can be extended to tetranomials and higher term polynomials. Unfortunately, the
techniques of A-hypergeometric series are not as easily applied.

The radius of convergence of a A-hypergeometric series is determined by the discriminant
variety. In the trinomial case, this implies two regions of R corresponding to the value of r,, .
Each of these regions is endowed with its own family of hypergeometric series that converge
to the root of their respective polynomial. In the tetranomial case, the discriminant variety
breaks up R? into several different regions. These regions are not convex, and some of them
do not have a known A-hypergeometric solution. We intend to further explore this problem
in a follow up paper.

3. MAIN RESULTS

3.1. Bounds on the /-th tail. One of our main results concerns an upper bound for the
(-th tail of 71,y (c) and zy;i(c). This provides us with a way to determine how many terms of
our series are necessary to yield an approximate root.

Theorem 3.1. Consider the series

() ()

J

l’low<0) = W

¢ k—1 . k
-1 (—1)"* 14 kn—jm 1
l‘low(c) cl/m 1+ Z ( kmk ' H ] cn/m
k=1 j=1
- & (=) Sy 14k —gm 1 \"
- cl/m Z kmk ' H ] cn/m
k=t+1 j=1
1+n+4n
1 (=) " (n—m)f
- 1/m n—m 4
c| 14 <m lc|™™ —n (2-) ™ > <m |c|"/m>
Proof. Note that for all integers k > 1,

Fl .
I1 LR = JM S og(14-kn—jm) —log()

L

<

< elog(l—i—kn—m)-l—flk*l1og(1+kn—jm)—log(j) dj

Ltkn k—1
1—m-+kn m 1+m—Ekm+Ekn
1+m—Ekm+Ekn k—1

1+kn

< (nfm) T (n—m)t
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Then

1 & (=)™ 1+ kn—jm 1\"
cl/m Z < kmF H ] cn/m

k=0+1 j=1

<| =L i <H1+kr;—3m> (:n_c}l/):l)k

k=0+1

00 1+kn k

-1 n m L (=)

- Lcl/m (n—m) (n—m)k 1 (mcn/m>
k=(+1

1 (nfm) 1+7Tln+én (TL - m)l

< )
— 1/m n—m I
|| 14 <m |c|n/m —n (#) m ) (m |c|n/m)

Theorem 3.2. Consider the series

T > v,k e+ (n—m)—1 1 k
rpi(c) = —c/nmm) [1 — Z (k(n e . 1;[ J ; > <Cn/(n_m)> ]

k=1

Then for any integer ¢ > 2,

. (=) S km4jin—m)—1 1\

ni(c) = (=1)cH/ [1—; (% H il j ) > <Cn/(n—m)> ]
e o= [ (=1) Ckm o+ j(n—m) — 1 1\
=‘(—1>c fmm Y (m ]Hl : ; )(Cn/m—m))

k=0+1
! (ﬁ)(%) (c Tfi” )g
£(n (2)™7 4+ Je 77 (n—m))

Proof. The proof follows similarly from the proof of Theorem 3.1, except we make use of the
result that for all £ > 1,

k—1 . m—1
IIMHmm—mwwg(gywnkl

7 m

j=1

Using the preceding bounds on the /-th tail of the A-hypergeometric series, we can fur-
ther understand the behavior of these A-hypergeometric series. In the following section,
we conjecture the amount of terms of these A-hypergeometric series necessary to yield an
approximate root.
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3.2. Proposed Algorithm. In order to develop our algorithm, we assume the following
conjecture holds.

Conjecture 3.3. Let f(z1) = ¢1 + cox}? + c327® € Z[r1] with d :== a3 > as > 1 and |¢;| < H
for all i. Let g(z1) = 1+ ca* + 2} with 0 < m < n and ged(m,n) = 1 be rescaled from f.
Then we need to evaluate at most log(dH ) terms of an A-hypergeometric solution and undo
our rescaling to yield an approximate root of f.

We have yet to prove this conjecture; however, we suspect a proof will use Theorem 3.1
and 3.2 in conjunction with the results presented in Rojas and Ye [6]. With this assumption,
we outline our algorithm.

Algorithm 3.4. (Solving Trinomial Equations Over R)
Input. ¢y, ¢9,c3,a2,a3€Z\ {0} with |¢;| <H for alli and d := az > ay > 1.

Output. z,..., 2, €Q such that z; is an approzimate root of f with associated true root
GG ER for all j, and the (; are pair-wise distinct.
Description.

1: Rescale the coefficients and exponents of f so that it is reduced to the form 1+ cx™ + x"
where c #£0, 0 <m <n andgcd(m n)=1.
2: Compute Ty, p :=

3: Using Table 1, evaluate log(dH) terms of Tmia(c), Tiow(€), Tni(c), 1Zni(c), 2Zni(c), 1T1ow(C),
o 2810w (€) dependmg on the value of m, n, Ty, ,, and c.
4: Undo the rescaling to yield an approzimate root of f.

3.3. Experimental Results. Through numerical experimentation, we have seen that Con-
jecture 3.3 holds true for 30,000 distinct polynomials with a; = 11, a3 = 39 and H = 1000.
Thus in every case tested so far, Algorithm 3.4 provided an approximate root of a trinomial
in time polynomial to the input size.

We outline an implementation of Algorithm 3.4 in the following example.

Example 3.5. Let f(x) = 470 — 789x1! + 48x3° € Z[x,]. We compute three approximate
roots corresponding to the three real roots of f.

1: We compute \g = ;=5 and Ay = (—)1/39 so that

789 (470\'* 4,
g(l‘) = /\Of()\lx) 1-— m (E) T+ x

Since ged(11,39) = 1, we do not need to reduce further.
2: We have that r, , = B

1135 (30-11)" 39
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3: Since m and n are both odd, ¢ < 0, |¢| > .., and log(dH) =~ 10, we consider the
following sums

10 k-1 . k
-1 (=129 21430k — 115 1
"= 1+ Z k11F j 39/11 ~ 0.9011
k=1 j=1
vy = e 09 | _ i (D)7 11k +5(39 —11) — 1 1 g
2 — " k(39 _ 11)k = ] ’0’39/(39711)
~ —1.0487
10 k—1 . k
. 1 11k +5(39 — 11) — 1 1

o a1/(39-11) |4 '
T3 = |c| 1 z:: k(39 — 11)F ]1;[1 j |c[39/(39-11)

~ 1.0332

4: Undoing the rescaling, we have our three rational approximate roots of f.
A1z1 = ap /by =~ 0.9554
Azo = ag/by = —1.1118
Az3 = a3 /bs =~ 1.0955

Thus, our algorithm provided three approximate roots for a univariate trinomial in deter-
ministic time log®™M (dH).
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