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Big Picture

We want to solve systems of polynomial equations quickly.

This is important problem that arises in numerous scienti�c
and engineering applications.

But in order to solve the multivariate case with several
polynomials, we should at least be able to settle the univariate
case.

This research settles the trinomial case.
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Solve?

What do we mean by solving?

De�nition (Approximate Root ([2]))

Let f be a polynomial with f (ζ) = 0. We say z is an approximate

root of f provided that the sequence given by z0 = z and
zi+1 = zi − f (zi )/f

′(zi ) for all i ∈ N satis�es

|zi − ζ| ≤
(
1

2

)2i−1
|z − ζ|.

We call ζ the associated root.

This notion provides an e�cient encoding of an approximation that
can be quickly tuned to any desired accuracy.
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Quickly?

If our algorithm takes l bit operations, we want l ≤ Csn where C
and n are positive constants, and s is the �input size� of our
polynomial. In other words, we want to �nd a O(sn) algorithm.

De�nition

Let f (x) =
∑t

i=1 cix
ai . We de�ne the size of our polynomial as the

sum
∑t

i=1 log((|ci |+ 2)(|ai |+ 2)).

We will develop an algorithm that requires at most log4(dH) bit
operations where d is the degree and all coe�cients absolute value
are at most H.
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Problem Statement

Problem

Given

f (x1) = c1 + c2x
a2
1 + c3x

a3
1 ∈ Z[x1]

with c1c2c3 6= 0, d := a3 > a2 ≥ 1, and |ci | ≤ H, devise an

algorithm that �nds an approximate root of f using logO(1)(dH) bit

operations.

Why trinomials? Monomials and binomials are well understood and
such algorithms for them already exist. We run into problems
extending this to tetranomials, which we will later discuss.
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Our approach

1 Via rescaling, we can reduce �nding the roots of f to �nding
the roots of the polynomial

g(x1) = 1 + cxm1 + xn1 ∈ C[x1]

where c 6= 0, 0 < m < n, and gcd(m, n) = 1.

2 We can use A-hypergeometric series to e�ciently �nd an
approximate root of g .
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Simplifying the problem

Consider the equation f (x1) = c1 + c2x
a2
1 + c3x

a3
1 = 0.

1 Multiply f and/or the variable x1 by ±1 so to reduce the
special case of approximating the positive roots where c3 > 0.

2 Using rescaling, simplify to the polynomial

1 + cxm + xn

where c 6= 0, 0 < m < n and gcd(m, n) = 1.
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Rescaling

Consider the equation f (x1) = c1 + c2x
a2
1 + c3x

a3
1 = 0.

We can express a root of f as a function x(c1, c2, c3). Note
that for any non-zero scalar λ,

x(λc1, λc2, λc3) = x(c1, c2, c3).
x(c1, λ

a2c2, λ
a3c3) = λ−1x(c1, c2, c3).

Choose complex constants λ0 and λ1 satisfying

λ0λ
0
1 = c−11 and λ0λ

a3
1 = c−13

Consider λ0f (λ1x1) = 1 + c2λ0λ
a2
1 xa2 + xa31 . If ζ is a root of

λ0f (λ1x1), then λ1ζ is a root of f (x1).
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Example

Let f (x1) = 2 + 3x21 + 5x31 .

f (x1) has only one negative real root. So we consider
f̃ (x1) = −f (−x1) = −2− 3x21 + 5x31 , which has one positive
real root and 5 > 0.

We then solve for λ0 and λ1 so that

λ0λ
0
1 = −1

2
and λ0λ

3
1 =

1

5

Hence

λ0f̃ (λ1x) = −λ0f (−λ1x) = 1−

(
3

2

(
2

5

)2/3
)
x2 + x3
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Hypergeometric Solution

Now that we've simpli�ed, how can we solve?

Theorem (Passare and Tsikh [3, 1])

Consider the equation

a0 + a1x + a2x
2 + · ·+xp + · ·+xq + · ·+an−1x

n−1 + anx
n = 0

The solution x(a0, .., [p], .., [q], .., an) may be expressed as

∞∑
k∈Nn−1

ε−〈βq ,k〉+1

(q − p)k!

Γ ((−〈βq, k〉+ 1)/(q − p))

Γ (1 + (〈βp, k〉+ 1)/(q − p))
ak00 ak11 · ·[p] · ·[q] · ·aknn
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Hypergeometric Solution

Theorem (Trinomial case)

Consider the equation 1 + cxm + xn = 0 with c 6= 0, 0 < m < n,
gcd(m, n) = 1. Let rm,n := n

m
m
n (n−m)

n−m
n

If |c| < rm,n, x(c) = νn

[
1 +

∑∞
k=1

(
νmk
n

knk
·
∏k−1

j=1
1+km−jn

j

)
ck
]

where νn is any n-th root of −1.
If |c| > rm,n,

xlow(c) = νm
|c|1/m

[
1 +

∑∞
k=1

(
νnkm
kmk ·

∏k−1
j=1

1+kn−jm
j

)(
1

|c|n/m

)k]
and xhi(c) = νn−m|c |1/(n−m)

[
1−

∑∞
k=1

(
ν−nk
n−m

k(n−m)k
·
∏k−1

j=1
km+j(n−m)−1

j

)(
1

|c|n/(n−m)

)k]
where νm and νn−m are any m-th and n −m-th root of −1.
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How many terms are enough?

In the case when |c | > rm,n,

Theorem (xlow)

For any integer ` ≥ 2,∣∣∣∣∣∣ νmc1/m

∞∑
k=`+1

 νnkm
kmk

·
k−1∏
j=1

1 + kn − jm

j

( 1

cn/m

)k
∣∣∣∣∣∣

≤ νm

c1/m
·

(
n

n−m

) 1+n+`n
m

(n −m)`νnm

`

(
cn/m − n

(
n

n−m

) n−m
m
νnm

)(
cn/mm
νnm

)` .
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For any integer ` ≥ 2,

Theorem (xhi)

∣∣∣∣∣νn−mc
1/(n−m)

∞∑
k=`+1

(
ν−nk
n−m

k(n −m)k
·
k−1∏
j=1

km + j(n −m)− 1

j

)(
1

cn/(n−m)

)k
∣∣∣∣∣

≤ νn−mc
1/(m−n)

n`
(

n
m

)−1+m+`m
n−m

(
c

n
m−n ν−n

n−m

n−m

)`
`
(
n
(

n
m

) m
n−m + c

n
n−m (m − n) νnn−m

) .
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How many terms?

The prior bounds give a useful metric to determine how
quickly the A-hypergeometric series converge, but how many
terms are necessary to be an approximate root?

We've found that log(dH) many terms work through
numerical testing, but we've yet to formulate a proof.

We suspect that the results provided in Rojas and Ye [4] will
be particularly useful in �nding this.
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Example

Proceeding from our prior example, consider

−λ0f (−λ1x) = 1−
(
3
2

(
2
5

)2/3)
x2 + x3.

The solution to −λ0f (−λ1x) = 0 is given by

x = (−1)

1 +
∞∑
k=1

(−1)2k

k3k
·
k−1∏
j=1

1 + 2k − 3j

j

(3

2

(
2

5

)2/3
)k


Evaluating log(dH) ≈ 3 (where d = 3 and H = 5) terms of the
series yields x ≈ −1.3584, so −λ1x ≈ −1.0009 is an approximate
root of our input polynomial.



Motivation Algorithm Future Directions Closing

Example

Proceeding from our prior example, consider

−λ0f (−λ1x) = 1−
(
3
2

(
2
5

)2/3)
x2 + x3.

The solution to −λ0f (−λ1x) = 0 is given by

x = (−1)

1 +
∞∑
k=1

(−1)2k

k3k
·
k−1∏
j=1

1 + 2k − 3j

j

(3

2

(
2

5

)2/3
)k


Evaluating log(dH) ≈ 3 (where d = 3 and H = 5) terms of the
series yields x ≈ −1.3584, so −λ1x ≈ −1.0009 is an approximate
root of our input polynomial.



Motivation Algorithm Future Directions Closing

Example

Proceeding from our prior example, consider

−λ0f (−λ1x) = 1−
(
3
2

(
2
5

)2/3)
x2 + x3.

The solution to −λ0f (−λ1x) = 0 is given by

x = (−1)

1 +
∞∑
k=1

(−1)2k

k3k
·
k−1∏
j=1

1 + 2k − 3j

j

(3

2

(
2

5

)2/3
)k


Evaluating log(dH) ≈ 3 (where d = 3 and H = 5) terms of the
series yields x ≈ −1.3584, so −λ1x ≈ −1.0009 is an approximate
root of our input polynomial.



Motivation Algorithm Future Directions Closing

A special case

What if |c | = rm,n?

Then we have a degenerate root, a root with
multiplicity greater than 1. How do we solve?

Suppose f (x) = 1 + cxm + xn has a degenerate root ζ. Then
f (ζ) = f ′(ζ) = 0, which implies f (ζ) = ζf ′(ζ) = 0. So we have the
following system,

1 + cζm + ζn = 0

0 + cmζm + nζn = 0.

This implies that

cζm =
n

m − n
and ζn =

m

n −m

Solving either of those binomial equations will yield our degenerate
root ζ.
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Algorithm

Given a polynomial f (x1) = c1 + c2x
a2
1 + c3x

a3
1 ,

1 Using rescaling and multiplying by ±1, consider the real roots
of

λ0f (λ1x) = 1 + cxm + xn

where c 6= 0, 0 < m < n, and gcd(m, n) = 1.
2 Compute rm,n = n

m
m
n (n−m)

n−m
n

.

1 If |c | < rm,n, compute log(dH) terms of

νn

[
1 +

∑∞
k=1

(
νmk
n

knk
·
∏k−1

j=1

1+km−jn
j

)
ck
]
.

2 If |c | > rm,n, compute log(dH) terms of

xlow = νm
|c|1/m

[
1 +

∑∞
k=1

(
νnk
m

kmk ·
∏k−1

j=1

1+kn−jm
j

)(
1

|c|n/m

)k]
or

xhi(c) = νn−m|c |1/(n−m)

[
1−

∑∞
k=1

(
ν−nk
n−m

k(n−m)k
·
∏k−1

j=1

km+j(n−m)−1
j

)(
1

|c|n/(n−m)

)k]
.

3 If |c | = rm,n, use one the following binomial equations to solve

for a root: cζm = n
m−n or ζn = m

n−m
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Algorithm

Given a polynomial f (x1) = c1 + c2x
a2
1 + c3x

a3
1 ,

1 Using rescaling and multiplying by ±1, consider the real roots
of

λ0f (λ1x) = 1 + cxm + xn

where c 6= 0, 0 < m < n, and gcd(m, n) = 1.
2 Compute rm,n = n

m
m
n (n−m)

n−m
n

.

1 If |c | < rm,n, compute log(dH) terms of

νn

[
1 +

∑∞
k=1

(
νmk
n

knk
·
∏k−1

j=1

1+km−jn
j

)
ck
]
.

2 If |c | > rm,n, compute log(dH) terms of

xlow = νm
|c|1/m

[
1 +

∑∞
k=1

(
νnk
m

kmk ·
∏k−1

j=1

1+kn−jm
j

)(
1

|c|n/m

)k]
or

xhi(c) = νn−m|c |1/(n−m)

[
1−

∑∞
k=1

(
ν−nk
n−m

k(n−m)k
·
∏k−1

j=1

km+j(n−m)−1
j

)(
1

|c|n/(n−m)

)k]
.

3 If |c | = rm,n, use one the following binomial equations to solve

for a root: cζm = n
m−n or ζn = m

n−m



Motivation Algorithm Future Directions Closing

A natural question arises: why do we only consider the trinomial
case instead of tetranomials and beyond?

Because the techniques of A-hypergeometric series are not as easily
applied.
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Consider all possible rescaled trinomials of the form
g(x) = 1 + cxm + xn. It turns out the radius of convergence
of the A-hypergeometric series corresponding to the roots of g
relate to the discriminant of g .

In particular,

∆ = 0 ⇐⇒ |c | =
n

mm/n(n −m)(n−m)/n
= rm,n.

Hence, the two families of A-hypergeometric series that solve
g correspond to two regions of R, each with its own known

hypergeometric solution.
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For a rescaled tetranomial, g(x) = 1 + cx l + dxm + xn, we
have that the discriminant breaks up R2 into 8 distinct regions.

However, these regions are not convex, and a hypergeometric
series solution for each region is not known.

In a future paper, we will investigate this further.
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