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Abstract

For a univariate trinomial f(x) = c1 + c2x
a2 + c3x

a3 , we review a
method to lift degenerate roots of f over Z/(p) to roots of f over Qp.
We use this technique to show partial optimality of the logarithmic root
closeness bound of −O(p log2(a3H) logp(a3)) recently proven by Rojas and
Zhu, and give full optimality of a bound on the efficiency of this technique.

1 Introduction

Let f(x) = c1 + c2x
a2 + c3x

a3 ∈ Z[x], 0 < a2 < a3, be a univariate trino-
mial. Computing bounds on the distances between roots of f over Qp induces
faster solving f , which in turn encodes fast solving over Z/(pk), a problem with
applications in number theory and coding theory (see, e.g., [3, 6, 1]). Recent
work of Rojas and Zhu [5] has shown that for ζ1, ζ2 roots of f , log |ζ1 − ζ2|p ≥
−O(p log2(a3H) logp(a3)). We examine the optimality of this bound.

Theorem 1.1. Let f , p, H be as above, ζ1, ζ2 roots of f . Then log |ζ1− ζ2|p =
−Ω(log max{a3, H})

Our result shows at least a linear dependence on a3, H. We are currently
unaware of any examples with log |ζ1 − ζ2|p = −Ω(pε) for some ε > 0.

We now give the tools and definitions relevant to our result. First, we recall
the classical Hensel’s lemma:

Lemma 1.2. (See, e.g., [2, Thm. 4.1 & Inequality (5.7)].) Let f(x) ∈ Z[x] and
suppose a ∈ Zp satisfies

f(a) = 0 mod p, f ′(a) 6= 0 mod p.

Then there is a unique α ∈ Zp such that f(α) = 0 in Zp and α = a mod p.

We next define a structure first introduced in [4] to extend Hensel’s lemma
to degenerate roots. We let ordp : Cp → Q be the standard p-adic valuation on
Cp:
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Definition 1.3. [4] Let f ∈ Z[x] and let f̃ be its reduction mod p. For a

degenerate root ζ ∈ Fp of f̃ , define s(f, ζ) := mini≥0{i + ordp
f(i)(ζ)
i! }. For

k ∈ N, i ≥ 1, define inductively a set Tp,k(f) of pairs (fi−1,µ, ki−1,µ) ∈ Z[x] ×
N as follows: Set (f0,0, k0,0) := (f, k), then for i ≥ 1 with (fi−1,µ, ki−1,µ) ∈
Tp,k(f), and any degenerate root ζi−1 ∈ Fp with si−1 := s(fi−1, ζi− 1), let
ζ := µ+ζi−1p

i−1, ki,ζ := ki−1,µ−si−1, fi,ζ(x) := p−s(fi−1,µ,ζi−1)fi−1,µ(ζi−1+px)
mod pki,ζ , and include (fi,ζ , ki,ζ) in Tp,k(f).

The pairs (fi,µ, ki,µ) form the nodes of a tree structure, which we now define.

Definition 1.4. [4] Define Tp,k(f) inductively as follows:
(i) Set f0,0 = f , k0,0 = k, and let (f0,0, k0,0) be the label of the root node of
Tp,k(f).

(ii) The non-root nodes of Tp,k(f) are labeled uniquely by the (fi,ζ , ki,ζ) ∈
Tp,k(f) for i ≥ 1.

(iii) There is an edge from node (fi−1,µ, ki−1,µ) to node (fi,ζ , ki,ζ) iff there is

a degenerate root ζi−1 ∈ Fp of f̃i−1,µ with s(fi−1,µ, ζi−1) ∈ {2, . . . , ki−1,µ − 1}
and ζ = µ+ ζi−1p

i−1 ∈ Z/(pi).

Example 1.5. Consider the binomial f0,0 = f(x) = x9 − 1 over Z3, and let
k0,0 ≥ 4. Then 1 is the degenerate root of f mod 3. We find s(f, 1) = 3, and
f1,1 = 3−3(1 + 3x)9 = x mod 3. As the root 0 of f1,1 is non- degenerate, the
root 1 + 0 · 3 + . . . lifts by Hensel’s Lemma. Further, this is the only root of f
in Z3.

The nodes of Tp,k(f) indeed encode the base-p digits of roots f over Zp:

Lemma 1.6. [4, Lem. 2.2 &.6] Suppose f ∈ Z[x]\pZ[x] has degree d, f0,0 := f ,
i ≥ 1, µ := ζ0 + · · · + pi−2ζi−2 is a root of the mod pi−1 reduction of f ,
ζ ′ := µ + pi−1ζi−1, the pairs (fi−1,µ, ki−1,µ) and (fi−1,ζ′ , ki−1,ζ′) both lie in

Tp,k(f), and ζi−1 has multiplicity m as a root of f̃i−1,µ in Fp. Then Tp,k(f)
has depth ≤ b (k − 1)/2c and at most bd/2c nodes at depth i ≥ 1. Also, deg
f̃i,ζ′ ≤ s(fi−1,µ, ζi−1) ≤ min{ki−1,µ,m}, and fi,ζ′p

−sf(ζ0+ζ1p+· · ·+pix), where

s :=
∑i−1
j=0 s(fj,ζ0+···+ζi−1pj−1) ≥ 2i. In particular, f(ζ0+ζ1p+· · ·+ζi−1pi−1) = 0

mod ps and f ′(ζ0 + ζ1p+ · · ·+ ζi−1p
i−1) = 0 mod pi

The first statement of the lemma above implies that k must be sufficiently
large for the depth of Tp,k(f) to be large enough to detect non-degenerate roots
of f (if they exist). For any binomial f = c0 + c1x

d with c0c1 6= 0 mod p, it is
known that Tp,k(f) has depth at most 1, and that k > s(f0,0, ζ0) is large enough
for Tp,k(f) to achieve its maximal depth. For trinomials, such a sufficiently large
k is determined in [5].

Proposition 1.7. [5, Coroll. 6.6] Suppose f(x) = c1 + c2x
a2 + c3x

a3 ∈ Z[x]
has degree d, 0 < a2 < a3, p - c1c2c3. Let S0 be the maximum of s(f, ζ0) for
any degenerate root of f over Z/(p), and define D to to be the maximum of
ordp(ζ1 − ζ2) over all distinct non-degenerate roots ζ1, ζ2 of f over Zp, or 0 if
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there are fewer than two distinct non-degenerate roots of f . Finally, define Mp

to be 4, 3, 2, according to p = 2, p = 3, p ≥ 5. Then

k ≥ 1 + S0 min{1, D}+Mp max{D − 1, 0}

guarantees Tp,k(f) has depth ≥ D.

As the complexity of solving algorithms is dependent on k [5], our goal is
to determine the smallest k so that Tp,k(f) has depth D as above. It turns out
that the k given above is optimal:

Theorem 1.8. For p ≥ 5, there exist trinomials f = c1 + c2x
a2 + c3x

a3 such
that Tp,k(f) has depth ≥ D =⇒ k ≥ 1 + S0 min{1, D}+Mp max{D − 1, 0}.

2 Proofs

We prove Theorems 1 and 2 by examining the trees of two families of examples.

Example 2.1. Consider the family gp(x) = x2−(2+pj)x+1+pj. Constructing

Tp,k(gp) with f0,0 = gp, we see that ˜f0,0 = x2 − 2x + 1, so that 1 is the unique

degenerate root of ˜f0,0. We obtain s(f0,0, 1) = 2, and compute k1,1 = k0,0 − 2
and f1,1 = p−2((1 + px)2 − (2 + pj)x+ 1 + pj) = p−2(p2x2 − pjx) = x2 − pj−1x
mod pk1,1 . Proceeding, we find s(fi,1, 0) = 2, ki,1 = ki−1,1 − 2, and fi,1 = x2 −
pj−ix mod pki,1 for all i > 1. At i = j, fj,1+···+0·pj−1 = x2−x, so that we obtain
non-degenerate roots 1 and 1+pj that lift uniquely by Hensel’s Lemma. Clearly,
it is necessary that k ≥ 1+2j = 1+2+2(j−1) = 1+2+2(j−1) = 1+S0 +2D
for the roots to be discovered, and that | log |(1 + pj)− 1|p| = O(log(H − 2)).

Example 2.2. Consider now the family hp(x) = x2+p
j − 2x+ 1. We again set

f0,0 = hp and have that 1 is a degenerate root of ˜f0,0, and compute s(f0,0, 1) = 2,

k1,1 = k0,0 − 2, f1,1 = p−2((1 + px)2+p
j − 2(1 + px)) = p−2(pj+1x + (pj +

2)(pj + 1)p2x2 + higher order terms) = pj−1x + x2 mod pk1,1 . We note that
the ”higher order terms” in the binomial expansion of f1,1 are killed off in its
reduction mod-p. We then have s(f1,1, 0) = 2, k2,1 = k1,1 − 2 and see that all
higher order terms of f1,1 increase in powers of p in p−2f1,1(px), so that more
terms disappear mod pk2,1 . Proceeding, we see that for i > 1, s(f1,i−1, 0) = 2,
ki,1 = ki−1,1−2, and fi,1 = pj−1x+x2. At i = j, we obtain non-degenerate roots
1 and 1 + (p − 1)pj that lift uniquely by Hensel’s Lemma, yielding a necessary
k ≥ 1 + 2j = 1 + 2 + 2(j − 1) = 1 + 2 + 2(j − 1) = 1 + S0 + 2D, and | log |(1 +
(p− 1)pj)− 1|p| = O(log(a3 − 2)).

3 Future directions

It is not a priori clear if the phenomena described in either of the theorems occur
generically, or if there is a particular relation between the coefficients and degrees
of monomial terms of f that governs this extremal behavior. One immediate
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direction to pursue is numerical testing of random f - namely, one implements
the root solving algorithms described in [5] and determines for which f root
spacing and k are extremal. As we are currently unaware of any trinomials with
attaining the full O(p log2(a3H) logp(a3)) bound, numerical experiments could
serve to find examples with even more tightly packed roots.

It is unclear what the relationship between the necessary k for depth D and
the closeness of roots is; while both families of examples provided achieve both
extremes simultaneously, it is not obvious that the relationship holds for all
extremal f . Heuristically, it makes sense that that large k and close roots are
related - both come from a tree with high depth. Making more precise this
relationship would provide information on when either of the phenomena occur.
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