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Problem

Let f(x) = c1x? + cox? + c3x¥ € Z[x]. How many roots of f over Z/(p*) are
there, and where do they lie?

* Can information about roots of f over Z/(p) say anything about roots of f over
Z/(p)?
* |If the root is simple, then Hensel's Lemma gives us the desired result.

* Degenerate roots are more tricky...

Example

Let f(x) = x2. Then f has a single degenerate root at 0 over Z/(p), but over
7/(p?), the roots are given by (0, p, ..., (p — 1)p).
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Applications to Coding Theory

* Just as strings of bits can represent words and data, we can consider a more
general code K written as a tuple (g1, ..., q,) of elements of Z/(p*).

* We can also represent K with an element F of (Z/(p*))[x]<, by letting q; equal
the coefficient of x'—1.

* Applications in error-correction involve computing roots of a polynomial

G € (Z/(P*)IXIy] over (Z/(p*))[x].
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We can efficiently encode the roots of f over Z/(p¥) for successively larger k by

finding the roots of f over Qp.

Figure 1: 3-adic integers (Quanta
Magazine, 2020)

* Observe we can uniquely write any

rational % as % = pkg, where k € Z
and ged(n,d) = 1. The p-adic
valuation ordp(+) is defined on Q to be
ord,(a/b) = k.

Define the p-adic absolute value | - |,
on Q by |2, = p~orde(a/b),

The completion of Q with respect to

| - | is denoted by Qp, the p-adic
numbers.

p-adic numbers can also be expressed
by formal series Zfis ajpj, where

aj € {0,...,[3—1}



An Analogy

Figure 2: 3-adic integers (Quanta

Magazine, 2020) Figure 3: Bisection Method (Wikipedia, 2021)
* Consider the sequence * Consider the sequence obtained by
obtained by extracting the applying the bisection method to /2
digits of the non-1 root of in the interval [1,2]: 1, 1.25, 1.375,
x2 —1overZ3: 2,2+2-3, 1.4375, ...

242-342-32, ...

* Both sequences converge at a geometric rate! Applying Newton's method to
either allows both to converge even faster!
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How to solve over Q,: Trees

An example over Q17:

Definition f(x) =1—x340 k >3)

Let f € Z[x] and let f be its

reduction mod p. For a

degenerate root ¢ € Fp of f, (14x, k — 2) (12x + 10, k — 2)Bx + 15, k — 2) (3x + 3, k — 2)
define s(f,¢) :=

m|n,>0{l+ordp } For

keN,i>1, deﬁne inductively a

set T, i (f) of pairs 140-17+...442-17+..13 414 17 4 .16 + 16 - 17 4 . ..
(fi—1,ki—1) € Z[x] x N as

follows: Set (fo, ko) := (f, k),

then for i > 1 with

(fi—1, ki—1) € Tpk(f), and any

degenerate root (j_1 € ) with

si—1 = s(fi—1,Gi—1), let

k,' = k,'_l — Si—1, f,(X) =

psUimrwCi=a) 1 (Gio1 + px)

mod pki, and include (f;, k;) in

Tp, k().




How to solve over Q,: Trees

An example over Q3:

Definition (fo(x) =x° =1, ko > 3)

Define 7, «(f) inductively as
follows: (i) Set fo = f, ko = k,
and let (fo, ko) be the label of
the root node of 7, «(f).
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An example over Q3:

Definition (fo(x) =1—x° ko > 3)

Define 7, x(f) inductively as
follows: (i) Set fo = f, ko = k,
and let (fo, ko) be the label of
the root node of 7, «(f). (ii)
The non-root nodes of 7, «(f)
are labeled by the
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(f,k—2), A=x

11



How to solve over Q,: Trees

An example over Q3:

Definition (fo(x) =1—x% ko > 3)

Define 7, «(f) inductively as
follows: (i) Set fo = f, ko = k,
and let (fo, ko) be the label of
the root node of 7, «(f). (ii)
The non-root nodes of 7, «(f)
are labeled by the

(Fi, ki) € Toi(F) for i > 1. (iii)
There is an edge from node
(fi—1, ki—1) to node (f;, k;) iff
there is a degenerate root

¢io1 €Ty of i1 with
s(fi—1,Gi—1) € {2,..., ki—1—1}.

(A, k—2), A =x
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Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of T, «(f) above, let f = fo.0 = co + c1x? € Z[x] with
coc1 #0 mod p. Then for all k, the tree T, «(f) has depth at most 1.
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Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of T, «(f) above, let f = fo.0 = co + c1x? € Z[x] with
coc1 #0 mod p. Then for all k, the tree T, «(f) has depth at most 1.

* The tree gives approximate roots of f in just two digits!

* This gives complexity of root-approximating algorithms linear in ged(d, p — 1)
and polynomial in log(dpH), where H = max{co, c1}

* Also, the roots are never less than 1/p apart.
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Trees and Trinomials

Theorem (Rojas and Zhu, 2021)

Let f = c1 + c2x?2 + c3x?3 be a trinomial with 0 < a» < a3, pt c1. Define

So = max{s(f, o) | Co is a degenerate root of f over {0,1,...p—1}} and

D = max{ord,(¢ — &) | ¢,& are non-degenerate roots of f over Qp}, setting either
quantity to 0 if not applicable. Then k > 1+ So min{1, D} + M, max{D — 1,0}
(where M, = 4, 3, or 2, according to p =2, p =3, p > 5) guarantees Tp,k has
depth at least D.
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Trees and Trinomials

Theorem (Rojas and Zhu, 2021)

Let f = c1 + c2x?2 + c3x?3 be a trinomial with 0 < a> < a3, p{ c1. Define

So = max{s(f, o) | Co is a degenerate root of f over {0,1,...p—1}} and

D = max{ord,(¢ — &) | ¢,& are non-degenerate roots of f over Qp}, setting either
quantity to 0 if not applicable. Then k > 1+ So min{1, D} + M, max{D — 1,0}
(where M, = 4, 3, or 2, according to p =2, p =3, p > 5) guarantees Tp,k has
depth at least D.

* Explicit, but worse (not O(1)) on k than in the binomial case.

* The analogous root spacing bound induced is given by
|log |z1 — z2|p| = O(plog?(dH) log,(d)).

* Two simple families of examples prove that the minimal root spacing is at least
linear in log(dH) and that the depth of k has dependence on D and Sg .
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Two families of examples

Example

The family gp(x) = x> — (24 p/)x + (1 + p/) has roots z1 = 1, zo = 1 + p/, so that
log |z1 — z2[p = — log(H — 2).
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Example
The family gp(x) = x> — (24 p/)x + (1 + p/) has roots z1 = 1, zo = 1 + p/, so that
log |z1 — z2[p = — log(H — 2).

It is clear from factoring that gp(x) = fo(x) has its roots as claimed. We now

make use of the tree 7, «(gp(x)).

gp(x) = x2—2x+1 has degenerate root 1 over Z,, with so(gp(x), 1) = 2. We then
have k1 = ko—2and f; = p=2((1+px)%2 — (2+p/)(1+px) +1+p/) = x2 — p/—1x
mod pkt .

Proceeding, we obtain a chain fi = x> — p/~ix for i < j. At i = j, the mod-p
reduction of f; splits into non-degenerate roots 0 and 1.

We see k > 2j+1 =1+ Sp+ 2(D — 1) is required to detect both non-degenerate
roots in the tree.

Example

Similarly, we can prove family hy(x) = xP'+2 _ 2x + 1 has roots z; = 1,
z=1+(p—1)p/ +... (so that log|z1 — z2|p = — log(d — 2)) and extremal k.
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