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Pseudorandom generators

Pseudorandom generators have many applications:

Monte Carlo-method simulations.

Key generation in cryptography.

Simulate randomized algorithms.

. . .
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Random mapping statistics

Our motivation is to find “simple” functions with
“unpredictable” iterates that can potentially be good
candidates or building blocks for pseudorandom generators.

Definition

A t-nomial is a polynomial with exactly t monomial terms.

Sparse polynomials over prime fields have not been explored in
this direction.
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Random mapping statistics

A first step is to analyze their behavior and see if there is
evidence whether they can be good pseudorandom generators.

Definition

Let f (x) ∈ Fp[x ]. The value set of f is the set
Vf = {f (a) | a ∈ Fp}. The cardinality of Vf is denoted by #Vf .

Let f (x) ∈ Fp[x ]. For any positive integer m, we write
f m(x) = f ◦ · · · ◦ f (x) for the mth iterate of f under
composition.

Definition

Let f (x) ∈ Fp[x ]. We say a ∈ Fp is a periodic point of f if
there exists positive integer n such that f n(a) = a.



Kai Lu

Random mapping statistics

A first step is to analyze their behavior and see if there is
evidence whether they can be good pseudorandom generators.

Definition

Let f (x) ∈ Fp[x ]. The value set of f is the set
Vf = {f (a) | a ∈ Fp}. The cardinality of Vf is denoted by #Vf .

Let f (x) ∈ Fp[x ]. For any positive integer m, we write
f m(x) = f ◦ · · · ◦ f (x) for the mth iterate of f under
composition.

Definition

Let f (x) ∈ Fp[x ]. We say a ∈ Fp is a periodic point of f if
there exists positive integer n such that f n(a) = a.



Kai Lu

Random mapping statistics

A first step is to analyze their behavior and see if there is
evidence whether they can be good pseudorandom generators.

Definition

Let f (x) ∈ Fp[x ]. The value set of f is the set
Vf = {f (a) | a ∈ Fp}. The cardinality of Vf is denoted by #Vf .

Let f (x) ∈ Fp[x ]. For any positive integer m, we write
f m(x) = f ◦ · · · ◦ f (x) for the mth iterate of f under
composition.

Definition

Let f (x) ∈ Fp[x ]. We say a ∈ Fp is a periodic point of f if
there exists positive integer n such that f n(a) = a.



Kai Lu

Random mapping statistics

A first step is to analyze their behavior and see if there is
evidence whether they can be good pseudorandom generators.

Definition

Let f (x) ∈ Fp[x ]. The value set of f is the set
Vf = {f (a) | a ∈ Fp}. The cardinality of Vf is denoted by #Vf .

Let f (x) ∈ Fp[x ]. For any positive integer m, we write
f m(x) = f ◦ · · · ◦ f (x) for the mth iterate of f under
composition.

Definition

Let f (x) ∈ Fp[x ]. We say a ∈ Fp is a periodic point of f if
there exists positive integer n such that f n(a) = a.



Kai Lu

Value set

Observation

The value set of f (x) = cxd + x + a differs from that of
g(x) = cxd + x by a constant.

Therefore, for studying the value set of such polynomials, we
can restrict ourselves to the case f (x) = cxd + x .
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Value set

Let’s first look at a very special case when d = (p + 1)/2.

Proposition

Let f (x) = cx (p+1)/2 + x ∈ Fp[x ]. If c 6= ±1 and 1− c2 is a
square in Fp, then #Vf = p. If c = ±1 or 1− c2 is not a
square in Fp, then #Vf = (p + 1)/2.

We would like to generalize this.
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Value set

It is well known that F∗
p is cyclic.

Definition

x ∈ F∗
p is an ith root of unity if x i = 1.

The set of ith roots of unity is a subgroup of F∗
p and has order

gcd(p − 1, i) for each i .

We define Hp(d) = gcd(p − 1, d − 1), H to be the subgroup of
Hp(d)th roots of unity, and G to be the set of cosets of H.
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Value set

Lemma

For a coset of H, if its elements do not evaluate to 0 under
f (x) = cxd + x ∈ Fp[x ], then f maps it bijectively to a coset of
H.

Corollary

For a 6= 0, f (x) = cxd + x + a ∈ Fp[x ] has at most
(p − 1)/Hp(d) roots.

Corollary

The value set of f (x) = cxd + x ∈ Fp[x ] is a union of {0} and
cosets of H.
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Value set

Figure: Plot of #Vf vs gcd(d − 1, p − 1) made with MATLAB.
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Value set

Take a generator g of F∗
p. Let f (x) = cxd + x ∈ Fp[x ].

Define a relation ∼(c,d) on G by g iH ∼(c,d) g
jH if

(cg i(d−1) + 1)/(cg j(d−1) + 1) ∈ g j−iH.

Lemma

If there exists i such that i(d − 1) ≡ logg (−1/c) mod (p − 1),

then ∼(c,d) is an equivalence relation on G \ {g iH}.
Otherwise, ∼(c,d) is an equivalence relation on G .
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Value set

Theorem

Let f (x) = cxd + x ∈ Fp[x ].
If there exists i such that i(d − 1) ≡ logg (−1/c) mod (p − 1),

then #Vf = 1 + Hp(d)
∣∣(G \ {g iH})/ ∼(c,d)

∣∣.
Otherwise #Vf = 1 + Hp(d)

∣∣G/ ∼(c,d)

∣∣.

The previous proposition is a special case, as there are 2 cosets
of (p − 1)/2th roots of unity.
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Periodic points

Definition

Given a function f : Fp → Fp, the functional graph of f is a
directed graph with p vertices labelled by the elements of Fp,
where there is an edge from u to v if and only if f (u) = v .

Figure: Functional graph of x2 over F37 made with Wolfram
Mathematica.
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Periodic points

Proposition (Bach, Bridy 2013)

For a bijection ϕ : Fp → Fp, the functional graph of
ϕ−1 ◦ f ◦ ϕ is isomorphic to that of f , for any f : Fp → Fp.

For f (x) = cxd + x + a, if a 6= 0, we can take ϕ(x) = ax , and
we get
ϕ−1 ◦ f ◦ ϕ(x) = (c(ax)d + ax + a)/a = cad−1xd + x + 1.
Therefore, to study the behavior of such trinomials under
iteration, it suffices to consider ones of the form
f (x) = cxd + x + 1 and f (x) = cxd + x .
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Periodic points

Lemma

If f (x) ∈ Fp[x ] is a bijection, then every element of Fp is a
periodic point of f .

This means that for bijective f (x) = cxd + x ,
g(x) = cxd + x + 1 has the same number of periodic points.
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Periodic points

Figure: Functional graph of 133x195 + x over F389 made with
Wolfram Mathematica.
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Periodic points

Figure: Functional graph of 133x195 + x + 1 over F389 made with
Wolfram Mathematica.
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Periodic points

However, for non-bijective f , it appears that we can’t hope for
nice behavior.
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Periodic points

Figure: Functional graph of 122x195 + x over F389 made with
Wolfram Mathematica.
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Figure: Functional graph of 122x195 + x + 1 over F389 made with
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Periodic points

Let’s try to understand the case when f (x) = cxd + x better.

Definition

Let C ,G be graphs. A covering map f : C → G is a surjection
and a local isomorphism: the neighbourhood of a vertex v in C
is mapped bijectively onto the neighbourhood of f (v) in G .

Definition

A graph C is a covering graph of graph G if there is a covering
map from C to G .
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Periodic points

Proposition

The functional graph of f (x) = cxd + x excluding the
connected component containing {0} is a covering graph of the
functional graph of the mapping that f (x) = cxd + x induces
on G , the set of cosets.

Corollary

The cycle lengths that appear in the functional graph of
f (x) = cxd + x are multiples of that of the functional graph of
the mapping that f (x) = cxd + x induces on G .
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Periodic points

Figure: Functional graph of
122x137 + x over F389

excluding 0 made with
Wolfram Mathematica.

Figure: Functional graph of
the mapping that 122x137 + x
over F389 induces on G made
with Wolfram Mathematica.
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Periodic points

Figure: Functional graph of
145x137 + x over F389

excluding 0 made with
Wolfram Mathematica.

Figure: Functional graph of
the mapping that 145x137 + x
over F389 induces on G made
with Wolfram Mathematica.
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Thank you

Thank you to Professor Rojas, TAMU, and NSF.
Thank you for your time.
Questions?


