THE DISTRIBUTION OF SHORT ORBITS OF SINGULAR MODULI
RIAD MASRI, ANNIKA MAURO, AND TANIS NIELSEN

ABSTRACT. We study the asymptotic distribution of weak Maass forms averaged over short
orbits of Heegner points. Under a mild condition on the growth of the size of these orbits,
we give an asymptotic formula with a power-saving error term for these averages. We apply
our results to compute the limiting distribution of short orbits of singular moduli.

1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Overview. In this paper we study the asymptotic distribution of weak Maass forms
averaged over short orbits of Heegner points.

To summarize our results, let k& > 0 be an integer and M',, (1) be the space of weakly
holomorphic modular forms of weight —2k and level one. Define the differential operator D*
by

1
(4m)F
and D' f = f, where R; is the Maass weight raising operator

t
Rf=224+t ten
0z vy

DFf =

72R74 T R72kf7 k > 17

The operator D* maps M',, (1) to the space of weight zero weak Maass forms of level one.
Let d < —4 be an odd fundamental discriminant and Ay be the set of Heegner points of
discriminant d on the modular curve Xy(1). The class group G4 acts simply transitively on
Ag.
For each d, choose a subgroup H; < Gy and a Heegner point 754 € Ay. Consider the
Hd—OI'bit

Hd'TO,d:{TOU,d: O‘GHd}

and the corresponding average

Avy, (D, 10.4) |H| Z D*f(75,).

oc€Hy

We will give an asymptotic formula with a power-saving error term for Avy, (D*f, 10.4) as
|d| — oo for sequences of subgroups (H,) satisfying a mild growth condition; see Theorem
1.1 and Corollary 1.3. We then apply this result when £ = 0 and f = j is the modular j-
function to compute the limiting distribution of averages of short orbits of singular moduli;

see Corollary 1.4.
1
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1.2. Quadratic forms and Heegner points. We fix the following setup concerning qua-
dratic forms and Heegner points.

Let d < —4 be an odd fundamental discriminant and Q4 be the set of positive definite,
primitive, integral binary quadratic forms

Q(X, Y) = [CLQ,bQ,CQ](X, Y) = GQXQ + bQXY + CQY2

of discriminant b, — 4aqcq = d. There is a (right) action of SLy(Z) on Qg defined by

a [
Q= [aQ,bQ,CQ] — Q’y = [aé,bé,czg] for v = <’}/ (5) € SLQ(Z),
where
aly = aga’® + boay + cov’,
by, = 2aqa + bg(ad + ) + 2cg79,
CZ) = CLQBQ + bQﬂ(g + CQ52.
The set Q4/SLy(7Z) is a finite abelian group with respect to Gauss’s law of composition of
forms. Let G4 = Q4/SL2(Z) be the class group and h(d) = |G4| be the class number.

To each form @ € Q, we associate a Heegner point 7o which is the root of Q(X, 1) given
by

_ b+ VD _
N QGQ

TQ H.

We write zq := Re(7g) and yq = Im(7g). The Heegner points 7 are compatible with the
action of SLy(Z) in the sense that if v € SLy(Z), then

1(1Q) = Qv (1)
We define the set of Heegner points of discriminant d by

Ad = {T[Q] : [Q] € Qd/SLQ(Z)}

Given two forms Q, Q' € Qy, let Q o Q' denote their composition. The group G4 acts
simply transitively on A4 by

Q- Tig) = Tigoq)-
We will also denote this action by T[[QQ]I].
Recall that a form @ € Qy is reduced if

bo| < ag < co,
Q Q Q

and if, in addition, |bg| = ag or ag = cq, then by > 0. Each class in Q;/SLs(Z) contains
a unique reduced form. Let Q%9 denote the set of reduced forms representing the classes
in Q4/SLa(Z). If Q € QF4, then the corresponding Heegner point 7 lies in the standard
fundamental domain F for SLy(Z).

Finally, let é\d be the group of characters x : Gg — S! and Hj < é\d be the subgroup of
characters y which restrict to the identity on a subgroup Hy < Gg.
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1.3. Bounds for L—functions. Let x be a character of G4 and 4 be the quadratic Dirichlet
character of conductor d. Let g be an arithmetically normalized Hecke-Maass form for SLy(Z)
with eigenvalue A\, = 1/4 +t2 and ©, be the theta function of weight one and level |d|
associated to x. Let L(g ® X, s) be the Rankin-Selberg L-function of g ® 6,, L(, s) be the
L—-function of x, L(xa,s) be the L-function of x4 and ((s) be the Riemann zeta function.
We assume bounds of the form

L(g ® X, 1/2) < Age|d| e, (2)
L(x,1/2 +it) <, (1/4 4 t*)B27|d|*2Fe, (3)
L(xa,1/2 +it) <, (1/4 4 t2)Bate|d|%te, (4)

C(1/2 4 it) <, (1/4 4 t*)Pate (5)

for some absolute constants By, By, By, By > 0, 0 < 6; < 1/2 and 0 < §5,93 < 1/4.

By Harcos and Michel [6], the bound (2) holds for some sufficiently large B; > 0 and
d; = 1499/3000. By Duke, Friedlander and Iwaniec [3], the bound (3) holds with By = 5
and 02 = 1/4 — 1/23041. By Young [13], the bound (4) holds with B; = 1/12 and d3 = 1/6.
By Bourgain [1], the bound (5) holds with By = 13/168. We note that stronger bounds in
either the spectral or conductor aspect may exist; we stated here bounds in which both B;
and §; are given explicitly, with the exception of (2), in which case an explicit By has not
yet been given (see Remark 1.2).

The Lindeléf Hypothesis implies that the bounds (2) — (5) hold with By = By = B3 =
By =61 =0, =05 =0.

1.4. Main results. The following is our main result.

Theorem 1.1. Let k > 0 be an integer and f € M',, (1) be a weakly holomorphic modular
form with Fourier expansion

F(2) = Y alom)g ™+ 3 alm)g”, q:=efz) =

For each d, choose a subgroup Hy < G4 and a Heegner point 194 = TQr.,) € Ag. There is an
absolute constant 0 < 6 < 1/2 given by (6) such that

Noo
Avy, (DFf 104) = ﬁ Z C(10,4, Q) Z a(—m)ck (m, yg) e (—mg)
QeQr? m=0

yo>ZHd| =129

3 — €
+ —Bu(f) + Oc (|Hal ~d|*)
as |d| — oo where

C(104, Q) = Z Y([Q;ﬁd o Q]),
~ (1) (k 4 j)lm
— (4my) !k =)'

J

ck(m,y) ==
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and
Bu() = [ D re)dn
reg
is the regularized integral defined by (22). Assuming the Lindeldf Hypothesis, we have § =
9/20.

Remark 1.2. Let By, By, B3, By and 41, 02,93 be as in the bounds (2) — (5). Then the
constant 6 = §(By, By, Bs, By, 01, 2,93, €) in Theorem 1.1 is given by

(1 1-26
2 4(214 + 1)7 01 > 265 and A (1 2(51) < (1 4(53)(2A + 1)
1 1-—46,
—_ e —_ < / _ < _
%— 1;/;1,537 A'(1—201) > (1 —465)(2A + 1) and
A(1—405) > (1 —463)(2A + 1)

\

where
A= |max{B1/2+1+¢€ By +1/4+42¢}]| + 1,
A":=|B3+ By +3/2+ 3¢] + 1.

In order to give a numerical value for §, we need numerical values for the constants B;, ¢;.
In Section 1.3 we listed values for all of these constants except B;. The work of Harcos and
Michel [6] gives a polynomial dependence on the spectral parameter in the bound (2), which
ensures the existence of some sufficiently large B;. However, it seems difficult to produce a
numerical value for Bj.

If we impose a mild growth condition on the sequence of subgroups (Hy) then we can
ensure a power-saving exponent in the error term of Theorem 1.1. In particular, this allows
us to compute the limiting distribution of Avy, (D*f,70.4) as |d| — oo.

Corollary 1.3. Let (Hy) be a sequence of subgroups such that |Hy| > |d|" for some n > 0.
Then

Avy, (DR f 10.4) — ﬁ Z C(70.4, Q) Z a(—m)ci (m,yq) e (—mmg)
Qegy m=0

yQ> 5 tld= (/279
= %ﬁk(f) + OE<|d‘_(7’I—5)+e)
as |d| — oo.
1.5. Short orbits of singular moduli. Let
j(2) = ¢~ + 744 + 196884q + 21493760¢* + - -

be the classical modular j-function. Given a Heegner point 794 € A4, the values

Sa:=1{j(154) : o€ G}



THE DISTRIBUTION OF SHORT ORBITS OF SINGULAR MODULI 5

are algebraic numbers called singular moduli. These numbers are j-invariants of CM elliptic
curves and generate the Hilbert class field of K; = Q(v/d).

The class group G4 acts on the set of singular moduli Sy, and this action is equivariant in
the sense that j(79.4)” = j(77,) for o € G4. In particular,

, 1 , -
Avi,(J,T0a) = m Z J(70,a)
ocE€Hy

is the average of the Hy-orbit of the singular modulus j(794).
In [4], Duke determined the limiting distribution of traces of singular moduli, proving that

1 .
W( Z j(rg) — Z e(—TQ)) — 720
QGQZed Qegffd
yo>1

as |d| — oco. In particular, this resolved a conjecture of Bruinier, Jenkins and Ono [2] regard-

ing the convergence of a Rademacher-type series expression for traces of singular moduli.
Since So(j) = (7/3)720 (see (24)), we immediately get the following special case of Corol-

lary 1.3 which gives the limiting distribution of averages of short orbits of singular moduli.

Corollary 1.4. Let (H,) be a sequence of subgroups such that |Hy| > |d|" for some n > 0.
Then

1 1 -sye
T S ) g X Q=) = 20+ 0~ )
d o€Hy QEQEIed
vo> ZHdi-1/2-0)
as |d| — oo.

1.6. Acknowledgements. We would like to thank Sheng-Chi Liu and Wei-Lun Tsai for
several helpful discussions. This work was supported in part by the NSF grant DMS-1757872
(A.M. and T.N.) and the Simons Foundation grant #421991 (R.M.).

2. FROM AVERAGES ON SHORT ORBITS TO TWISTED TRACES

Let G be a finite abelian group and H < G be a subgroup. Let G be the group of
characters y : G — S* and H' < G be the subgroup of characters x which restrict to the
identity on H. Given a function f : G — C, the Fourier transform f : G — C is defined by

FOO =Y _x(0) (o).

oceG

The Poisson summation formula states that
1 1 B
FZJC(U):? Z fF(x)-
] al 2

Let ¢ : H — C be an SLy(Z)-invariant function and 7 € A4 be a Heegner point. Define
the evaluation map

€pr - Gd — C
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by esr(0) = ¢(77). Then by the Poisson summation formula we have
Z €o,r Z €¢,70, d
|Hd| oc€Hy ‘Gd| xEHF
or equivalently,
Aviy(6.7) = 17 - 2 Trea(o:m). (7)
d x€HF
where the twisted trace is defined by
Trxd ¢7 Z X
oceGy
Lemma 2.1. Let 7 = 11g,) € Ag. Then
Trya(6,7) = x([Q:) 7" D x(Q)o(rq).
Qegzled
Proof. Write
Qua/SLa(Z) = {[@Qu], - - -, [Qn]}-
Set 7 = 71g,) for some fixed j. Then

h(d) h(d)

TrX,d<¢7 T) - Z X([ [Q ] Z X T[QiOQj})'

i=1
Now, the form @; o (), is SLy(Z)-equivalent to a unique reduced form @Q;;, and Q; is SLy(Z)-
equivalent to @);; o QJ_I Hence

h(d)

Zx([Qi]) TQioQ;)) ZX (Qij 0 Q5 ' Dé(71.,))

- Z xX([Qi])d(T10,1)
=X D x(Q)d(rq).

QeQy?

3. BOUNDS FOR TWISTED TRACES OF AUTOMORPHIC FUNCTIONS

Let F denote the standard fundamental domain for SLy(Z). Given two SLo(Z)-invariant
functions ¢, ¢ : H — C, we define the Petersson inner product by

(61, ) = /f 61(2)B2(=)dp(2)

where

dxdy
e

du(z) ==
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is the hyperbolic measure. The corresponding Lo-norm is given by

lolle = vz = ( | |¢<z>|2du<z>)l/2.

Let D(SLy(Z)\H) denote the space of SLy(Z)-invariant functions ¢ : HH — C such that ¢
and A¢ are both smooth and bounded, where

A= (0% + 85)

is the hyperbolic Laplacian. For A € Z* we let A4 denote the composition of A with itself
A-times.

Proposition 3.1. Let ¢ € D(SLo(Z)\H) and 7 € Ay. Then
3 € €
Trya(@,7) = C(0)=(6, 1) + Oc(|[A%glla]d|"#E2) + Oc(| A% ] +1/4+)
for any integer A > max{B1/2+ 1+ €, By + 1/4 4 2¢} where
C(x) ==Y xlo).
ceGy

Proof. Let {u;}52, be an orthonormal basis of Maass cusps forms for SLy(Z) with A-
eigenvalues \; = 1/4 +t7. Define the non-holomorphic Eisenstein series

E(z,s) = Z Im(vz)®, Re(s)>1
V€T \SL2(Z)

which is an eigenfunction for A with eigenvalue s(1 — s). We have the spectral expansion
(see e.g. [9, Theorem 15.5])

00) = ok S tous(e) 4 1= (BG4 i) B 12+ it

J=1

which converges pointwise absolutely and uniformly on compact subsets of SLy(Z)\H. Using
vol(F) = w/3, this gives

3 = 1 ,
ol 7) = OO0 2{601) 4 30 W + [o.BC 2w ®
where
Wyas = > x(o)u;(7)
geGy
and

Wyat) = > x(0)E(77,1/2+ it).

oeGy

Now, by a formula of Waldspurger and Zhang [12, 14] (see also [6] and [11, Section 3]) we
have
|d] Lu; ® x,1/2)
2 L(sym?u;,1)

|Wx7d7j |2 =
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where wu; is the arithmetically normalized Maass form corresponding to u;. Then by the
Hoffstein/Lockhart bound [7]

L(sym2ﬁj7 1) >, A
and the bound (2)
L(u; @ x,1/2) <. /\f1+6|d|61+e
we get
Wy <e )\?+€|d|61/2+1/4+6/2. 9

Similarly, by Gross/Zagier [5] we have
L(x,1/2 +it)

Wa(t) = 9= (1/2+it)| | (1/2+it)/2 3D (10)
Then by the bound (3)
L(x, 1/2 + it) < (1/4 + %)52te|q|
and the standard bound
C(142it) >, (1/4+12)~¢ (11)
we get
Wia(t) < (1/4 4 t2)B42e|q| /4t (12)

By a repeated application of Stokes’ theorem (see e.g. [8, Lemma 4.1]), for any A € Z*
we have

(¢, u;) = A7 (A%, uy) (13)
and
(¢, E(-,1/2 +it)) = (1/4+t3)" A, B(-,1/2 + it)). (14)
Also, Parseval’s identity yields (see e.g. [9, (15.17)])

S A u + o [ %6 B 12+ i) Pde = A% (15)
j=1

Finally, by Weyl’s law
{t;: 1l <TH<T?
and the bound \; > 1/4, summation by parts shows that the series

=1

> v (16)

=1 7
converges for any integer A’ > 2.
Then (13), (14), the Cauchy-Schwarz inequality, (15) and (16) give
D (0 u A < 1A%l (17)

j=1
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and
/ (6, B 1/2 + i) (1/4 + )52t < || A%6)], (18)
R

for any A > max{B;/2+ 1+ €, By + 1/4 + 2¢}.
The proposition now follows by combining (8), (9), (12), (17) and (18). O

4. FOURIER EXPANSION OF D f

Here we state the Fourier expansion of D¥f. Recall that the Kloosterman sum is defined

by
S(a,b;c) = Z e (adi—bd)

d (mod c)
(e,d)=1

where d is the multiplicative inverse of d (mod ¢). Also, let I, denote the I-Bessel function
of order v.
By [10, Propositions 5.3 and 6.2], we have the following Fourier expansion.

Proposition 4.1. Let k > 0 be an integer and f € M',,(1). Then

Za —nz)ck(n,y) —l—ZBk n,y)e(nz),

n=1

where for 0 < n < N

k:+j'nk7
o(m,3) =Z )

= 47Ty (k—7)!"
and forn > 1,
k
(k +]
By(n,y) : _Sk Z .
J |
Vn = (dmny)ijl(k = j)!
with
N,
= —m,n;c) 4dmy/mn
Sk(n) = Z a k+1/22 Iopa ( c ) -
m=1 c>0

5. REGULARIZATION OF DFf

In this section we recall the construction of a function which regularizes the function DF f
in the cusp at oo.
Let ¢ : R — [0,1] be a C*° function such that

0 if £t<0
bo(t) := {1 i > (19)

Let 0 < n < 1. Define the Poincaré series

Fra2) = D gra(72) (20)

7€l o0 \SL2 (Z)
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where
Gin(2) = 3 (=) (I (2)) e~ m2),
wm,k,n<y) = ¢0 <y_727—/\/§> Ck(may)'

Then define the regularized function
frg(2) 5= D" f(2) = frn(2)- (21)
By [10, Proposition 7.1] we have the following result.

Proposition 5.1. For y > 2/v/3 4+ 1 we have
Fis(z) =Y bi(n,y) e (n2)
n=1

where bg(n,y) := Br(n,y) if k > 1 and bi(n,y) := a(n) if k = 0.

6. REGULARIZED INTEGRALS

For a fixed Y > 2/ \/3, define the truncated fundamental domain
Fy ={ze F:Im(z) <Y}

Then if f € M',,(1) we define the regularized integral of D f by

55 = [ D= Jim [ D) (22)

Yoo J 5,
By [10, Lemma 10.3], this limit always exists and
(from 1) = Bi(f)- (23)
Finally, by [10, Proposition 10.4] we have

where o1(n) is the sum of all positive divisors of n. In particular, if f = j is the modular
j-function, then

Bo(j) = g720. (24)

7. PROOF OF THEOREM 1.1

We will deduce Theorem 1.1 from the following result.



THE DISTRIBUTION OF SHORT ORBITS OF SINGULAR MODULI 11

Proposition 7.1. Let 794 = TQry.,) € Ag. Then

Trya(D* f,70a) = X(Qn )™ D x(Q) i a(—m)ex (m, yo) e (—mTq) + O(X)%Bk(f)
QeQye m=0

yQ> 5+
+ O€<7]72A‘d’61/2+1/4+6> + Oe<n72A|d|52+1/4+6/2)
+ O(|d|M*He) + O (1~ A=)t 1/4+e)

for any integers A, A’ > 0 with A > max{B;/2+ 1+¢,By+1/4+2¢} and A’ > B3+ B, +
3/2 + 3e.

Proof. By (21) we have
Trya(D* f,70.4) = Tryalfr 70.4) + Trya(fem T0.a).

By Proposition 5.1 we have f;" € D(SLa(Z)\H). Hence by Proposition 3.1 and (23) we
get

e 3 B E ) e
Tryalfiys T0.4) = CO)—Bi(f) + Ocln 241|012y L O (i 2A |02 /A e/2)

for any integer A > max{B;/2+ 1+ €, By + 1/4 + 2¢}.
By Lemma 2.1 we have

Trx,d(fk,mTO,d) = X([QTO,d])_l Z X(Q)fk,n(TQ)-

Qearpd

A straightforward modification of [10, Lemma 9.1] yields the decomposition

Z X(Q)fk,n(TQ) = Tx,d,l + Tx,d,Z

QEQ;ed
where
Noo
Tyai= Y. xX(@Q) a(-m)ex(m,yq)e(—mmq)
Qe m=0
yQ>%+n
Noo
Tya2 = Z X(Q) Z a(—m)cy (m, yg) e (—mg) .
QeQr m=0
R<yo<Zp+n

Since |x([Q])] = 1 for any [Q] € Q4/SL2(Z), an estimate gives
TX,daQ < A<d7 77)

where

Ald,n) == {Q € Q5+ V2/3 <yq <2/V3+n}l.
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We next bound A(d, n) along the lines of [10, Lemma 9.2]. Let ¢, : R — [0, 1] be a smooth

function which is supported on (2/v/3 —1,2/v/3 + 2n), which equals 1 on [2/v/3,2/v/3 + 1),
and which satisfies

oV <nt, £=0,1,2,.... (25)
Define the Poincaré series
P(z)= 3 ¢y(Im(y2)).

V€T 0 \SL2(Z)

Then by construction we get
Al < Y Pylra).
Qegfied

By [8, (7.12)] we have

Py(z) = ¢,7 /¢,7 1/2 4 it B(2,1/2 4+ it)dt

/ ¢ s—l—l)du

S Pyfra) = 20, (0h(d) + 5 / Gr(L/2 + it) Wy a(t)dt.

QGQ‘ried

where

Thus

An estimate gives

on(1) < 1.
Further, by (10) and the factorization
Coa(8) = C(s)LXa> )
we have

1/2—|—zt) :
W . 2 1/2+Zt d(1/2+lt /ZC( 1 2 t )
walt) = 2000 G2 1

Hence the bounds (11), (5) and (4) yield
Wy a(t) < (1/4 + ¢2)BatBatde| g datt/ite
It follows that
Z P,(mq) = O(nh(d)) + OE(C(n)|d|53+1/4+€)
QeQy

where
c(n) == / |g5;(1/2 +4t)[(1/4 + t2) Bt Bat3eqy
0
Integrate by parts A’-times and use the bound (25) to obtain
—(A'-1)

0(1/2 +it) < AT
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Hence
c(n) < i~y
for A" > By + By + 3/2 + 3¢. We have shown
A(d,n) = O(h(d)) + Oc(n~ 4D +1/1+).
An inspection of [10, Lemma 9.3] gives
1A% fismlle < 0>
Further, we have the bound
h(d) < |d|"/?*e.

Putting things together, we obtain the result.

Proof of Theorem 1.1. By Proposition 7.1, (7) and orthogonality, we have

Noo

1 3
Avy,(DFf,104) = hd) Z C(70,4, Q Z a(—m)cy, (m, yg) e (—mrg) + ;,@k(f)
QeQred m=0
yQ>f+n

E((Sla 527 53a A> A/)

where

C(104,Q) := Z Y([Q;ﬁd o Q)),

XEHF
and the error term is
E(01,09,03, A, A") = Oe(’Hd‘fln—zA’d|5l/2+1/4+e) n Oe(!Hd|717]’2A]d]52+1/4+6/2)
4 O Ha|~|d|24) + O (|Hy| g~ A =D d)ds+1/ 4+

for any A > max{B;/2+ 1+ ¢, By +1/4+2¢} and A" > B3 + By + 3/2 + 3e.
Let n = |d|~°, where b will be chosen to minimize the error term. We have

E(617 527 537 A’ A/) = O€(|Hd|_1|d|5+e)7

where

§ = §(01, 09,03, A, A') —max{% +%+2Ab,52+ i +2Ab,%—b,5g+}l+ (A" — 1)b}.

As b varies, 0 is minimized when

p1, p1 < poand p; < p;3
b= by = b(61,02,05, A, A') = ¢ pa, pa < p1 and py < ps

p3, p3 < pp and p3 < po
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where
125
P oAty
145
Pr-=4eAat1y
11— 45
P3‘——4A, .

Moreover, the minimal value of 9 is % — by.
Setting A = |max{B1/2+ 14+ ¢, By+1/4+2¢}| +1and A’ = |Bs+ Bs+3/2+ 3¢] + 1
yields the result.
O
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