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The j-function

Definition

The j-function is defined by

j(z) =
(1 + 240

∑∞
n=1

∑
m|n m

3qn)3

q
∏∞

n=1(1− qn)24
, q := e(z) = e2πiz .

It has the the Fourier expansion

j(z) =
1∑

m=0

a(−m)q−m +
∞∑

m=1

a(m)qm

where a(−1) = 1, and a(0) = 744.
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Modular functions

j(z) is a modular function for SL2(Z), that is:

j is meromorphic on H, or complex differentiable on H except
for an isolated set of points.

j is invariant under precomposition by SL2(Z). So, for
γ ∈ SL2(Z), j(γ(z)) = j(z).
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Fundamental domain of SL2(Z)

The fundamental domain of SL2(Z) acting on H is the region
of H that contains exactly one point in each orbit of each
element of H. The canonical fundamental domain F is
shaded here.
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Quadratic forms

Definition

A primitive positive definite integral binary quadratic form is
Q(x , y) = ax2 + bxy + cy2 with a, b, c ∈ Z, a > 0,
gcd(a, b, c) = 1.

Let d = b2 − 4ac < 0 be the discriminant of Q.

The root of Q(x , 1) in H is τ[Q] = −b+
√
d

2a .

Definition

Let Qd be the set of primitive positive definite integral binary
quadratic forms of discriminant d < 0.
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Action of SL2(Z) on Qd

The group SL2(Z) acts on Qd by substitution, that is if
γ =

(
p q
r s

)
, then Q(x , y) ◦ γ = Q(px + qy , rx + sy).

We can form the quotient Gd = Qd/SL2(Z).

Gauss showed that Gd is a finite group of order h(d) called
the class group of d .

By Siegel, we know that h(d)→∞ as |d | → ∞.

Let Gd = {[Q1], . . . , [Qh(d)]}.
Define Qred

d = {Q1, · · · ,Qh(d)} to be a complete set of
reduced forms.
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Heegner points

Definition

Let Λd = {τ[Q1], . . . , τ[Qh(d)]} be the roots associated with the class
representatives chosen earlier. These are called Heegner points.

Gd has a simple transitive group action on Λd denoted by τσ

for σ ∈ Gd , τ ∈ Λd .

This means that for any τ ∈ Λd , Gdτ = Λd .
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Singular moduli

Definition

Let Sd be the set of complex numbers {j(τQ1), . . . , j(τQh(d)
)}.

These are called singular moduli.

Singular moduli are algebraic numbers, which means they are
the root of some polynomial with rational coefficients.
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Group characters

Definition

A character of a finite abelian group G is a homomorphism
χ : G → S1, the complex unit circle.

Definition

The dual group or character group of G is the group of characters
of G under pointwise multiplication, written Ĝ .

Definition

Let H < G be a subgroup of a finite abelian group G . Then
H⊥ := {χ ∈ Ĝ : χ|H = 1} be the group of characters of G that
restrict to 1 on H.
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Example: Character Table of C4

C4, the cyclic group of order 4, has this character table:

1 a a2 a3

χ0 1 1 1 1
χ1 1 -1 1 -1
χ2 1 i -1 -i
χ3 1 -i -1 i

You can see that χ(x)χ(y) = χ(xy). Note that the sum of every
row besides the trivial χ0 is 0. This is true for every character
group.
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Big O notation

Definition

Given two functions f (x) and g(x), we write f (x) = Oε(g(x)) if
|f (x)| ≤ Cg(x) for some constant C > 0 depending only on ε.
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Traces of singular moduli

Fix some τ ∈ Λd .

Definition

The trace of a modular function f for some d is

Trd(f ) =
∑
σ∈Gd

f (τσ).

Trd(j) is an algebraic integer, which means it is the root of
some monic polynomial with integer coefficients.
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A theorem of Duke

Theorem (Duke, 2006)

1

h(d)

Trd(j)−
∑

σ∈Gd ,Im(τσ)>1

e(−τσ)

→ 720

as |d | → ∞ through d ≡ 0, 1 (mod 4).
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Averages of sub-orbits of singular moduli

Definition

For a subgroup Hd < Gd , the average of the Hd -orbit is

AvHd
(j , τ) =

1

|Hd |
∑
σ∈Hd

j(τσ).

Goal

We want to study the distribution of AvHd
(j) as |d | → ∞.
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Main Result

Theorem

Given a subgroup Hd < Gd and a Heegner point τ = τ[Qτ ] ∈ Λd

there exists 0 < δ < 1/2 such that

AvHd
(j , τ) = M(χ, d , τ) + 720 + Oε

(
|Hd |−1|d |δ+ε

)
as |d | → ∞ where

M(χ, d , τ) :=
χ([Qτ ])−1

h(d)

1∑
m=0

∑
Q∈Qred

d

yQ>
2√
3

+|d |δ−
1
2

Cd(Q)a(−m)e (−mτQ)

and Cd(Q) :=
∑

χ∈H⊥d
χ(Q).
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The exponent δ

Remark

Assuming the Lindelöf hypothesis for various L-functions, we can
take δ = 9/20.
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Corollary: Good sequences of subgroups Hd

Corollary

Let A > δ. If Hd satisfies |Hd | ≥ |d |A, then

AvHd
(j , τ)−M(χ, d , τ)→ 720

as |d | → ∞.

By Siegel’s theorem, |Gd | �ε |d |1/2−ε.
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Poisson summation

Let H < G be a subgroup of a finite abelian group G .

Let H⊥ := {χ ∈ Ĝ : χ|H = 1} be the group of characters of G
that restrict to 1 on H.

The Poisson summation formula states that for f : G → C,

1

|H|
∑
h∈H

f (h) =
1

|G |
∑
χ∈H⊥

∑
g∈G

f (g)χ(g).



Background and Definitions Main Result Proof outline

Use of Poisson Summation

By applying the Poisson summation formula to j , we can get

1

|Hd |
∑
σ∈Hd

j(τσ) =
1

h(d)

∑
χ∈H⊥d

∑
σ∈Gd

χ(σ)j(τσ).

Note that the left hand side of this equation is AvHd
(j).
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Twisted Traces

We call
Trχ,d(j , τ) :=

∑
σ∈Gd

χ(σ)j(τσ)

a twisted trace. So we have that

AvHd
(j , τ) =

1

h(d)

∑
χ∈H⊥d

Trχ,d(j , τ)

We will first focus on analysing the twisted trace.
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Background

Definition

Given two SL2(Z)-invariant functions φ1, φ2 : H→ C, we define
the Petersson inner product by

〈φ1, φ2〉 :=

∫
F
φ1(z)φ2(z)

dxdy

y2

The corresponding L2-norm is given by ||φ||2 :=
√
〈φ, φ〉.

Definition

Let D(SL2(Z)\H) be the space of SL2(Z)-invariant functions
φ : H→ C such that φ and ∆φ are both smooth and bounded,
where ∆ := −y2(∂2

x + ∂2
y ) is the hyperbolic Laplacian.

For A ∈ Z+ we let ∆A denote the composition of ∆ with itself
A-times.
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Asymptotics for the Twisted Trace

Proposition

If φ ∈ D(SL2(Z)/H), there is an absolute constant 0 < δ′ < 1/2
such that

Trχ,d(φ, τ) = C (χ, d)
3

π
〈φ, 1〉+ Oε

(
||∆Aφ||2 |d |−δ

′+ε
)

for all sufficiently large A ∈ Z+ where

C (χ, d) :=
1

h(d)

∑
σ∈Gd

χ(σ).
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Regularizing the j function

Let 1 > η > 0. Define

jη(z) :=
∑

γ∈Γ∞\SL2(Z)

gη(γz)

where

gη(z) :=
1∑

m=0

a(−m)ψm,η(Im(z))e(−mz),

ψm,η(y) := φ0

(
y − 2√

3

η

)
and φ0(t) is a C∞ function with

φ0(t) =

{
0 if t ≤ 0

1 if t ≥ 1.
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Regularizing the j function

It can be shown that for

j regη := j − jη,

j regη ∈ D(SL2(Z)/H). This means we can apply the earlier
proposition.
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Decomposing the trace

The twisted trace is linear, so:

Trχ,d(j , τ) = Trχ,d(j regη , τ) + Trχ,d(jη, τ).

Then by the proposition,

Trχ,d(j , τ) = Trχ,d(jη, τ) + C (χ, d)
3

π
〈j regη , 1〉

+ Oε
(
||∆Aj regη ||2 |d |

−δ′+ε
)
.

We can directly calculate that 3
π 〈j

reg
η , 1〉 = 720.
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Dependence on choice of Heegner point

Lemma

Let τ = τ[Qτ ] ∈ Λd . Then

Trχ,d(jη, τ) = χ([Qτ ])−1
∑

Q∈Qred
d

χ(Q)jη(τQ).
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Further decomposing Trχ,d(jη, τ)

We can further decompose∑
Q∈Qred

d

χ(Q)jη(τQ) = Tχ,d ,1 + Tχ,d ,2

where

Tχ,d ,1 :=
∑

Q∈Qred
d

yQ>
2√
3

+η

χ(Q)
1∑

m=0

a(−m)e (−mτQ)

Tχ,d ,2 :=
∑

Q∈Qred
d√

2
3
<yQ≤ 2√

3
+η

χ(Q)
1∑

m=0

a(−m)e (−mτQ) .
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More bounds

Lemma

There is a 0 < δ′′ < 1/2 such that

Tχ,d ,2 = O(ηh(d)) + Oε(η
−A′ |d |δ′′+ε).

for all sufficiently large A′ ∈ Z+.

Lemma

We have

||∆Aj regη ||2 � η−2A

for all A ∈ Z+.
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Putting it all together

Using the previous facts, we have

Trχ,d(j , τ) = C (χ, d)720 + χ([Qτ ])−1Tχ,d ,1 + Oε(η
−2A|d |δ′+ε)

+ O(ηh(d)) + Oε(η
−A′ |d |δ′′+ε).
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Calculating the average

Using the upper bound

h(d)� |d |1/2+ε

and orthogonality of characters we get

AvHd
(j , τ) =

1

h(d)

∑
χ∈H⊥d

Trχ,d(j , τ)

= M(χ, d , τ) + 720 + Oε(|Hd |−1η−2A|d |δ′+ε)

+ Oε(|Hd |−1η |d |1/2+ε) + Oε(|Hd |−1η−A
′ |d |δ′′+ε).
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Final Optimizations

Choosing η = |d |−b and optimizing b appropriately, we get that
there exists 0 < δ < 1/2 such that

AvHd
(j , τ) = M(χ, d , τ) + 720 + Oε

(
|Hd |−1|d |δ+ε

)
as |d | → ∞.
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Next Steps

As L-function bounds are improved, a numerical value of δ
can be found and improved.

Investigate sequences of Hd as |d | → ∞ that may have
combinatorial significance.

Look into certain choices of χ which allow Trχ,d(j , τ) to
describe Fourier coefficients for modular forms.
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Thank you

Thank you for your time, and thank you to Dr. Masri and the
organizers of this REU!
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