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Overview

© Background
@ Representation Theory, Markov Processes, Push-Block Model

© Introduction of Problem
@ Our Problem, the Correlation Kernel, Parameters

© Work Completed
@ Work of Cerenzia '18 / Zhou '21, Equations 33, 34 (Cerenzia),

Lemma 2.2 (Kuan), Proof of Lemma 2.2, Convolution

@ Next Steps
@ Proposition 4.2, Combining Lemma 2.2 and Equation 33, Explicit

Formula for K
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Background

Symplectic Group

A B
SP2n = [ C D}
o Lie Algebra
@ lrreducible Representation
e A=-D" . B=BT,Cc=C"
e Parametrized by {(A1,...,An) 1 A1 > ... > A\, > 0}

» Where A = (A1,..., \,) are mapped onto x = (xq, ..., x,) where
x1>..>x,>0and x; =\ +n—
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Review of Markov Processes

Markov Chain and Process

-The defining characteristic of a Markov chain is that no matter how the
process arrived at its present state, the possible future states are fixed.
-The continuous time version of a Markov Chain is a Markov Process.
-A Markov Process at a fixed time is called Determinantal

Transition Matrices

P(t), t > 0. The entries are the probabilities, p,(t), to transition from
one state (x) to another (y) where py ,(t) = P(Xer1 = y| X = X)
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Push-Block Model [Cerenzia '18]

Barriers and State Space
@ Z>o X Z4 integers
o XKH1D) < X,(.K) < X,(.KH) for odd values of K

i+1
° Xﬁ:fl) < X,(.K) < X,(.KH) for even values of K
|2 23 o} o3 i ) |:_; 2 b | a3 )
|z3 |2 x a2 at |acd o
[z} — |23 x — | z |3 B
|2 | af | a? | a?
|} — | x| | o |
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Introduction of Problem

Our Correlation Kernel Equation
KO ((s1,m), (if’ m)) =
an, +
Lo 2m) 25— fl Jsl,an1 (3)ds3,an, (%) (1 = x)™m =" +2m (14 x)1/2dx

2.3,114—1/2 (1_X)rn1+an1 (1+X)1/2
f 45 et(x— 517an1 X)Jsz,ang(u)' (1—u)™ (x—u) dudx

@ Our Problem: Write K(-,-) for (x;, nj, tj) where
1<i<Kti<..<tg,n>..>n
@ Parameters
> (S,', n,-) S ZZO X Z+
» a,=1/2if nis even
a,=—1/2if nis odd
> 1y = {%J represents the number of particles on the n' level
> sil/Z(X) represents a Jacobi polynomial

> f Jsp,11/2(X) sy 41/2(x) (1 = x)E/2(1 + x)1/2dx
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Cerenzia '18 and Zhou 21

Definition 1.1 (Cerenzia)

7—2n 1/2+a 2n 1/2+a
J

n,a
- 7—2n 1/2+a 2n—1/2+a *oK 7—2" 1/2+a 2n—1/2+a
t tl 1 _/ 15j—1
Definition 1.2(Cerenzia)
¢tb2n1 1/2+ap 42 1/2+a2
1 —
n2,a n2,a m ny,a
T dnytaptl/2  2m * By x Tty o np,ar X T 2nta+1/2 ng,m
c(2ny+ap+1/2)°"by v by

m]
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Cerenzia '18 and Zhou '21 (cont.)

Definition 1.3 (Zhou)

const x [Tn_y[detld) ™ | (¢ (£, 1)) X T (88" ) ko<
XTI detlrficy s (0 (6771 (877
xdet{pp " (x (127 C(Qn 1) X (BN <K L<n

S s (47 (B, (B2 ) i<kezol

2N 1 2 2N—-1/2
Xy /“( o W<k o<

@ Particle positions at time t are defined by X%a

)]1<K€<n

><det[N v
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Cerenzia '18 and Zhou '21 (cont.)

Result

const x [TV 1[detlpp™ +(xzf(f"1 D, X E ) i<k o<
c(2m—1

< T2y detfrgics gn (G (5 (B ez

1—1

xdet{pny (" (t2”2) RETh <K e<n

2 5 b 2 ? 2
x [T det[T"gnz "en (xg2 (£572), 52" (52 )<k e<n]
2ty 1
2N 1/2 2N—1/2
x det[\:?, (Xt /+a(t,- o i< en
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Equations 33 and 34

S35 )f’b(x)-(l — x)?(1 + x)dx

o x=#Z— forallxe[ 1,1]
k1 _ —(k+1)
. Jk,l/z(”é )=
—1 2K+ (1/2) 4y~ (k+(1/2))
° Jk,—1/2(z+22 ): 21/2_:_22—1/2
Equation 33

(f,8)a = 2" [ AX)g(x)W(a1/2)(X)dx

Equation 34
T(X) = 2210 (Jk,a,,’ T>aan,a,,(X)
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Application of Equation 33

n,—
.
AR n,a t—t,
° bn7+ bt 7-tlat2(>(7 -y) = JX’a7 JYva(P ! 2
thn 2n a
b oty
@ where p2 — pf(x) = et(x-1)

ti—t

o f=Jc,and g= J, ¢

o (fg)s:= 222 [ fx)g(x)Wa/2)(x)dx

Result

2a+1/2

p f]R Jx,a(X)Jy,aSOtlit2 (X)W(a,1/2)(X)dX
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Lemma 2.2

Lemma
fora==41/2, b=1/2, =1 < ¢ < 1, with Test Function TeC'[-1,1], then

o Ja,1/2 XJa,1/2 R
T(Q) = 22 J2 2B 719(1 - %)2(1 + %120
k
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Background Needed for Proof of Analog

[11] from Kuan '11 and Equation 32 and 33 from Cerenzia '18

a==+1/2 b=1/2
h(a,b) = 7TC%(
kT WeRK)
2 ifa=b=1/2

Where WA®b)(k) =
1 ifa=-1/2, b=1/2

(4.1.7) and (4.1.8)from Szego

P(—1/2,1/2)(X) _ 1x3x5...(2n—1) cos((2n+1)(¢/2))

a ~  2x4x6..2n cos((¢/2))
1/2,1/2) \ _ 5 1x3x5...(2n+1) sin(¢(n+1

P (x) = 22§4§6...§22+235n(si(nn¢ )

where x = cos¢
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Analog of Lemma 2.2 (cont.)

Proof.

Let a=1/2, b=1/2, x = cos ¢, ( = cos b, utilizing (4.1.7) of Szegd and

[11] of Kuan:
_,(1/2 1/2) )_,(1/2 ,1/2)(¢)

ot = )TN ) and
_ (1 )1/2(1 +X)1/2 — siné -
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Analog of Lemma 2.2 (cont.)

Proof.

Since T is C!, the Fourier series of T converges to T.

T(cos(9)) = Y2 ThZmkd) = Fp 4 71,5020 4

sm¢>

Where T) = 2 [ T(cos ¢) =10 g
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Lemma 2.2 Proof (cont.)

Proof.

Therefore combining the above steps gives:
1 J1/2 1/2(X)J1/2

Zk_ - 1/2 1/2 (C) T( )(1 - X)1/2(1 + X)1/2dX =

2 Z _1(Sm(g|kn—zl 0) f -,— COS ¢)sm((kn+1)¢) d¢) TO + -fl

(cos 0) = T(C)

sin(20)
sinf

+ .=
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Proof of Lemma 2.2 (cont)

Proof.

For the case of a = —1/2, using the same (4.1.8) of Szegé and [11] from
Kuan as used above, you get

J(_1/2’1/2)(X)j_1/2’1/2)(4) 2n+1)(¢/2 2n+1)(6/2
: h£71/2,kl/2) = %COS(C(OS(((b/)é))/ )) COS(C(OS((G/)2())/ )), and the rest of

this case follows similarly to a=1/2 O

o
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Proposition 4.2 [Cerenzia '18]

Define
For any (s, n), (t, m) € Z>0 X Lo and k € Z, define the functions:
Jtam w
e q)m—k(t 271'1 95 E(w)(w—l)’(m—)k“dw

o lnm(s, t) := 2 § <J5,a,,’ Jt’am(u)gzl)m_rm >a du, forn<m

The Determinantal Correlation function with Kernel

K*((s, n), (t,m)) = ="M (s, )1 (pcmy + D7y W ()07 _i(t)
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What Would Be Next!

@ Use Proposition 4.2, using ¢ to find W, aiming to get the closed from

of ¢

@ Use Lemma 2.2 to help simplify the integral results from Equation 33

o Determine if Probability ((s;, n;) is occupied at time t; for 1 < i < k)
= det[y)|det[T]det[¢]
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