
Counting Real Roots of Tetranomials Faster via
A-discriminants

Lisa Soule
.

29 July 2021

Abstract

Given a univariate polynomial with degree d and all coefficients having ab-
solute value at most H, there are decades-old algorithms that can count
the real roots in time polynomial in d log(H). We show how to count the
roots in time polynomial in log(dH), for a large fraction of inputs, when
there are just 4 terms. The case of 2 terms is elementary, while the case
of 3 terms was only discovered around 2009. For 4 terms, there is a geo-
metric explanation for why real roots are hard to count for a small fraction
of input tetranomials. We explore some of this geometry via some Matlab
experiments.

1. Introduction

We explore, via some Matlab experiments, how to speed up real root count-
ing on average for univariate tetranomials. A key tool we use is the theory
of A-discriminants and tropical deformations [DFS07].
.
There are some key motivations for trying to better understand and work
with discriminant varieties. The discriminant variety [GKZ94] is the set
of coefficients that define a polynomial with degenerate roots and degen-
erate roots help describe transitions in number of real roots. Closeness to
degeneracy governs hardness of numerical solving. The application of these
findings touch on a wide swath of areas including algebraic statistics, com-
putational biochemistry and partial differential equations.
.

1

Too see just how quickly discriminants can become algebraic nightmares in
the tetranomial case, observe the following two examples:
.
First, we see that using a simple tetranomial:

c0 + c1x+ c2x
2 + c3x

3 (1)

yields a manageable discriminant:

−27c20c
2
3 + 18c0c1c2c3 − 4c0c

3
2 − 4c31c3 + c21c

2
2.

But when we summon a slightly more sparse tetranomial:

c0 + c1x
3 + c2x

5 + c3x
19 (2)

we are left with a nastier result!:
.
1978419655660313589123979c160 c

5
3 + 6093825838807983035604992c120 c

3
1c

2
2c

4
3 −

416630859061143640782400c100 c1c
7
2c

3
3+4136784303514917397331968c80c

6
1c

4
2c

3
3−

168062625401816003641344c60c
11
1 c2c

3
3 + 546553895696624329228288c60c

4
1c

9
2c

2
3 +

304059692558924048760832c40c
9
1c

6
2c

2
3 + 9103573347707241984000c40c

2
1c

14
2 c3 +

24410972524327076888576c20c
14
1 c

3
2c

2
3 − 1103132840914428362752c20c

7
1c

11
2 c3 +

34725021329868800000c20c
19
2 + 498062089990157893632c191 c

2
3−

48896735641570639872 c121 c82c3 + 1200096737160265728c51c
16
2 .

.
Looking at this example we can see that we need better way to plot the
zero sets of complicated polynomials! We will use the clever Horn-Kapranov
Uniformization (HKU) to reduce the dimension of the parameter space!
.
Coding the HKU into Matlab takes a polynomial and runs it through two
loops. These loops essentially turn our unmanageable discriminants into a
nice summation of logs which are much simpler to work with.
.
If we change the input points (λ1 : λ2) to equal (cosθ, sinθ) this brings our
plots from [λ1 : λ2] in the projecive aspace P1

R to the unit semi-circle. This
provides a clear visual of the coefficient space of our polynomial’s discrimi-
nant:
.

2

Simplifying our visual even further, we can transform the semi-circle into
an amoeba by using logs of the polynomial coefficients [Kap91]. The
image of the semicircle gives green points where asymptotes lie in the
amoeba. We can now look at each chamber of discriminant coefficient
space more effectively:
.

While the amoeba shape is a cool-looking shape it is not trivial to draw.
Deciding if a rational point (x,y) lies in a 2-dimensional amoeba is already
NP-hard while deciding if a rational point lies on or near such a curve gets
us into interesting problems involving Diophantine approximation!
.
The aim is to then approximate the curves of the amoeba with tropical
approximations. Once an appropriate approximation has been made, those
curves will be used as inequalities to test for certain "points" in the
amoeba. These points will be specific polynomials that will land in the
quadrant that contains the correct number of real roots akin to it.

3

.
The Matlab code runs through a version of the HKU to plot the amoeba
and its quadrants. Each quadrant is also a sign chamber, signaling the sign
of the coefficients in ascending order of exponents. There are four
chambers for our tetranomial despite sixteen possible combinations of signs
for four terms. The reason is because of certain homogeneities. First,
multiplying f(x) by -1 will not change the number of real roots. This gets
rid of half of the possibilities. The second is that the number of real roots
is also not affected by changing x to -x, so we lose another half of the
entries, leaving us with four possible sign chambers and thus four
quadrants.
.
Examining each quadrant, specific coefficients can be given to the
polynomial to see where it is plotted in the coefficient space. The point is
plotted with logs of the absolute value of the coefficients, so it is important
to remember the signs to keep track of the proper chamber for each
specified polynomial.
.
Running through each quadrant, one can easily find a set of coefficients
that would put the chosen polynomial on both sides of each quadrant.
These specific polynomials can then be put into Maple to determine the
number of real roots. With this information in hand, now any future
polynomial of the same family can have the number of real roots
determined by merely plotting it as a point in the amoeba and seeing
where it lies in its associated quadrant!

2. Key Techniques

The following definitions and theorems will help us along the way:

Definition 1 (A-Discriminant Variety). For A =
[
a1 a2 a3 a4

]
we set

∇A to be the set of all [c1 : c2 : c3 : c4] in P3
C such that c1xa1 + ...+ c4x

a4 has
a degenerate root in P1

C. Note: The intersection of ∇A with the line
c1 = c4 = 1 in P3

C is then just the set of all [1 : c2 : c3 : 1] such that there is
a z in C with f(z) = za1 + c2z

a2 + c3z
a3 + za4 = 0 and f ′(z) = 0.

Definition 2 (A-Discriminant Polynomial). For A =
[
0 a2 a3 a4

]
(so

we assume a1 = 0) we define ∆A to be (1/c4)
a4−a3 times the determinant of

4

the Sylvester matrix of format (a4, a4 − a2) corresponding to the
polynomials f and f ′/xa2−1, i.e., ∆A is the determinant of an explicit
structured (2a4 − a2) by (2a4 − a2) matrix with entries that are either 0 or
a coefficient of f.

Definition 3 (Horn-Kapranov Uniformization). A way to efficiently
parameterize discriminant varieties. For A =

[
a1 a2 a3 a4

]
, let Â be

the 2x4 matrix defined by appending a row of 1s to the top of A and let B
in Z4x2 be any matrix whose columns form a basis for the right nullspace of
Â. Then the (logarithmic, reduced) Horn-Kapranov Uniformization for A is
the function

ξA([λ1 : λ2]) := (Log|[λ1, λ2]BT |)B

which defines a map from P1
R to R2.

Definition 4 (Amoeba). f is any polynomial in C[x1, . . . , xn] then its
amoeba is the set

{(log |x1|, . . . , log |xn|) | f(x1, . . . , xn) = 0 , xi ∈ C \ {0}}.

Theorem 1. If A =
[
a1 a2 a3 a4

]
then the A-discriminant variety is

exactly the zero set of the A-discriminant polynomial in P3
C.

Theorem 2. If A =
[
a1 a2 a3 a4

]
then the resulting reduced

A-discriminant contour is exactly the image of P1
R under the (reduced,

logarithmic) Horn-Kapranov Uniformization, ξA.

3. Results

The first part of the Matlab code will check to see if the tropical
approximation is close enough to the amoeba curve to yield an accurate
result. Choosing a simple, linear piece-wise approximation is the first step.
.
Here, we look at how well the tropical, linear piece-wise function y >= 0
and y >= x (in green) approximates the known curve of an amoeba. This
curve is y >= log(1 + ex) (in red) and lies in projective space, but brought
into the reals to be seen in two dimensions, P1

R → R2:

5

.

Testing random points for accuracy of the approximation leaves us
underwhelmed:
.

Testing 1000 i.i.d. random points:
Trials: 1 2 3 4 5
%: 62% 65% 63% 60% 65%

Testing 10,000 i.i.d. random points:
Trials: 1 2 3 4 5
%: 63% 63% 65% 64% 64%

Testing 100,000 i.i.d. random points:
Trials: 1 2 3 4 5
%: 64% 63% 64% 64% 64%.

Deciding a polynomial inequality, involving a polynomial of degree d in n
variables with coefficients all of absolute value <= H, at an input rational
point p = (a1/b1, ..., an/bn), is a highly non-trivial problem! So what can be
done to make a more accurate approximation? Since the arcs of the
discriminant contour are defined by linear combinations of logarithms, each
arc can be approximated by just 2 logarithms. This should also yield easier
Diophantine approximation.
.
Testing this new approximation for accuracy could be done in future
research with more time, but looking at the images produced in the Matlab
code will show just how much closer this new curve approximates the
contour of the amoeba.
.
The second part of the Matlab code will take in exponent values, run
through two loops to apply the HKU, and produce the associated amoeba
to the polynomial along with each quadrant. The family of polynomials

6

that will be used as the example is:

c1 + c2x
7 + c3x

22 + c4x
55.

This produces the following amoeba and its four quadrants:
.

7

.

Each of the four quadrants is labeled with the signs relating to the
coefficients of the polynomials within the example family. The amoeba
curves are in blue while the linear approximations are in red and the
newer, logarithmic approximations in green. In all quadrants, except for
the first one, the green curve approximates the discriminant contours more
accurately. The less accurate approximation of the first quadrant, however,
will not negatively affect the results. Points can still be checked using the
same inequalities and can be visually spotted within the targeted region to
determine the number of real roots.
.
Now, coefficients can be chosen to plot specific polynomials as points in the
quadrants. It will be pertinent to hit both sides of the curve with a point:
.

8

.

These polynomials are part of the example of family of polynomials with
specific coefficients that give them a particular point in the quadrants.
Now, these polynomials can be plugged into a computer algebra system,
such as Maple, where the number of real roots can easily be calculated:
.

.

Observing these results shows the number of real roots for the tested
polynomials:
.

• −1− x+ x22 − x55 has 1 negative root

• −2− 2x+ 10x22 − x55 has 2 positive roots and 1 negative root

• −2− 2x+ 10x22 − x55 has 2 positive roots and 1 negative root
−1 + x+ x22 − x55 has 2 positive roots and 1 negative root

• −20 + 10x+ 2x22 − 10x55 has 1 negative root

This process can be done with the remaining two quadrants to label the
coefficient space of the entire amoeba. With this information, any future
polynomial with any coefficients within the family can be easily plotted to
instantly know the number of real roots that specific polynomial has.

9

Acknowledgments
.
I would like to express my deepest gratitude to Dr. Maurice Rojas and TA
Joshua Goldstein for providing me with tireless support throughout this
entire process. I would like to individually thank Dr. Rojas for providing
me with the Matlab code on which this research is based.
I also would like to extend appreciation to TAMU and the NSF who made
this research experience possible.

References

[DFS07] Dickenstein, Alicia; Feichtner, Eva Maria; and Sturmfels, Bernd,
“Tropical discriminants,” J. Amer. Math. Soc., 20 (2007), pp.
1111–1133.

[GKZ94] Gel’fand, Israel Moseyevitch; Kapranov, Misha M.; and
Zelevinsky, Andrei V.; Discriminants, Resultants and Multidimensional
Determinants, Birkhäuser, Boston, 1994.

[Kap91] Kapranov, Misha, “A characterization of A-discriminantal
hypersurfaces in terms of the logarithmic Gauss map,” Mathematische
Annalen, 290, 1991, pp. 277–285.

10

