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Project

Find an efficient algorithm to speed up real root counting for univariate
tetranomials with high probability. Approach will be by approximating
A-discriminant contours in a new way.
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Why do we care about discriminant varieties?

• Root Behavior: the discriminant variety is the set of coefficients that
define a polynomial with degenerate roots.
• Degenerate Roots: Degenerate roots help describe transitions in

number of real roots and closeness to degeneracy governs hardness of
numerical solving.
• Topological Behavior: More generally, degenerate roots describe

transitions in the isotopy type of a (varying) real algebraic surface.
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Real polynomial systems occur in applications like...

• Algebraic Statistics: Where there is an unknown probabilistic model,
and you are solving for some hidden probabilities that govern the model.
This entails solving polynomial systems for roots in the interval [0,1].
• Computational Biochemistry: Where you are trying to predict

possible equilibrium concentrations for certain compounds in a
complicated chemical reaction. Here, one usually finds sparse
polynomial systems in many variables, but of low degree.
• Discretizing Partial Differential Equations: In certain physical

modelling problems, one is trying to approximate the solutions of a very
complicated differential equation. So one then uses a numerical
scheme to approximate the solution, and this usually involves expanding
into a basis of polynomials. Getting information about the solution a
PDE can then be reduced to solving a structured polynomial system,
many times, with varying coefficients, over the real numbers.
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Easy Example

Using the following tetranomial:

c0 + c1x + c2x2 + c3x3 (1)

yields a manageable discriminant:

−27c2
0c2

3 + 18c0c1c2c3 − 4c0c3
2 − 4c3

1c3 + c2
1c2

2
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Harder Example

Using a nastier tetranomial:

c0 + c1x3 + c2x5 + c3x19 (2)

yields a nastier result!:
1978419655660313589123979 c16

0 c5
3 + 6093825838807983035604992c12

0
c3

1c2
2c4

3 −416630859061143640782400c10
0 c1c7

2c3
3 +4136784303514917397331968c8

0c6
1c4

2c3
3 −

168062625401816003641344c6
0c11

1 c2c3
3 + 546553895696624329228288c6

0c4
1c9

2c2
3 +

304059692558924048760832c4
0c9

1c6
2c2

3 + 9103573347707241984000c4
0c2

1c14
2 c3 +

24410972524327076888576c2
0c14

1 c3
2c2

3 − 1103132840914428362752c2
0c7

1c11
2 c3 +

34725021329868800000c2
0c19

2 + 498062089990157893632c19
1 c2

3 −
48896735641570639872c12

1 c8
2c3 + 1200096737160265728c5

1c16
2
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Moving Forward...

We need a better way to plot the zero sets of complicated polynomials!
We will use the clever Horn-Kapranov Uniformization to reduce the
dimension of the parameter space!
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Horn-Kapranov Uniformaization

A way to efficiently parameterize discriminant varieties. For
A =

[
a1 a2 a3 a4

]
, let Â be the 2x4 matrix defined by appending a row of

1s to the top of A and let B in Z4x2 be any matrix whose columns form a
basis for the right nullspace of Â. Then the (logarithmic, reduced)
Horn-Kapranov Uniformization for A is the function

ξA([λ1 : λ2]) := (Log|[λ1, λ2]BT |)B

which defines a map from P1
R to R2.

July 27, 2021 DTU Compute 17Algorithmic ,Algebraic ,Geometry



Horn-Kapranov Uniformization II

For nicer plots, we use: (λ1 : λ2) = (cosθ, sinθ)
This brings our plots from: [λ1 : λ2] ∈ P1

R
to: (λ1 : λ2) ∈ Unit Semi-Circle.
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Amoeba

If f is any polynomial in C[x1, . . . , xn] then its amoeba is the set

{(log |x1|, . . . , log |xn|) | f (x1, . . . , xn) = 0 , xi ∈ C \ {0}}

.
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Amoeba

Figure: This is the Ameoba for 1 + x1 + x2.

Image obtained from: https://en.wikipedia.org/wiki/Amoeba(mathematics)
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Complexity of Amoeba Membership

• Amoebae look cool but are not trivial to draw.
• Deciding if a rational point (x,y) lies in a 2-dimensional amoeba is

already NP-hard!

Plaisted ,1984;Avendano,Kogan,Rojas,Rusek ,2013

• The boundary of the last amoeba is defined by the graphs of “simple”
transcendental function, e.g., y = Log(1 + ex).
• Deciding if a rational point lies on or near such a curve gets us into

interesting problems involving Diophantine approximation!
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What to do about Amoeba membership?!

• Alternative: Approximate each amoeba boundary curve by a piecewise
linear curve.
• Such curves can be extracted from the Horn-Kapranov Uniformization.
• Do they work well with random polynomials/points?
• Experiments show: So-so...
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Experimentation!!!

The ultimate goal of our experimentation is to understand how well tropical
discriminant chambers approximate true sign chambers.
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Matlab Code Round 1

• Looks at a specific chamber of the amoeba
• Uses a tropical approximation of the curve to check which side of the

curve (and by proxy, the coefficient space) a point resides in
• Tests a set number of i.i.d. random points to see if they are within that

chamber
• Yields an accuracy percentage
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Using a Tropical, Linear Approximation:

We use the piecewise function y=0 and y=x to approximate the curve of the
amoeba.

Figure: y >= log(1 + ex) and y >= 0 and y >= x
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Results are so-so:

Testing 1000 i.i.d. random points:
Trials: 1 2 3 4 5
%: 62% 65% 63% 60% 65%

Testing 10,000 i.i.d. random points:
Trials: 1 2 3 4 5
%: 63% 63% 65% 64% 64%

Testing 100,000 i.i.d. random points:
Trials: 1 2 3 4 5
%: 64% 63% 64% 64% 64%
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Complexity Issue for Chamber Membership

• Deciding a polynomial inequality, involving a polynomial of degree d in n
variables with coefficients all of absolute value <= H, at an input
rational point p = (a1/b1, ...,an/bn), is a highly non-trivial problem!

• We will use a little trick to get around this! We will change x and y to
logarithmic values to yield a more manageable equation to test our
inequalities.
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Alternative: Simplified Horn-Kapranov

• The arcs of the discriminant contour are defined by linear combinations
of logarithms.
• Approximate each arc by just 2 logarithms: This should also yield easier

Diophantine approximation.
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Matlab Code Round 2

• Exponent values are plugged in
• Code runs through two loops to apply the Horn-Kapranov Uniformization
• The associated amoeba to the polynomial is given along with each

quadrant
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Example:
We look at a family of polynomials

Figure: This is the Ameoba for c1 + c2x7 + c3x22 + c4x55.
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Much Closer Approximations (for the most part):
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Testing the Coefficient Space

• Setting the coefficients of the polynomial plots a point in the quadrant!
• This shows us where the polynomial lies in coefficient space!
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Plotting Polynomials as Points:

−1− x7 + x22 − x55 −2− 2x7 + 10x22 − x55
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More Points:

−1 + x7 + x22 − x55 −20 + 10x7 + 2x22 − 10x55
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Obtaining a Real Root Count:

Plugging the previous polynomial examples into Maple will give the real
roots.
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Results:

Figure: Using Maple software
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Now we can see which region future polynomials lie in which will give us the
number of real roots!
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With many thanks...

• Thank you Dr. Rojas for the Matlab code!
• Thank you to Dr. Rojas and TA Joshua Goldstein for the guidance!
• Thank you to the NSF and Texas A & M for making this research

experience possible!
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