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Background



Dirichlet Characters

Definition

A Dirichlet character modulo q is a function χ : (Z/qZ)∗ → C∗
which satisfies the following:

χ(n) = χ(n + ql) ∀ n, l ∈ Z.

χ(mn) = χ(m)χ(n) ∀ n,m ∈ Z.

If gcd(n, k) > 1 ,then χ(n) = 0.

If gcd(n, k) = 1, then χ(n) 6= 0.

χ(1) = 1.

Note that χ is even if χ(−1) = 1 and χ is odd if χ(−1) = −1.
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Eisenstein Series

Let χ1, χ2 be primitive Dirichlet characters with conductors q1, q2
respectively. The weight-zero Eisenstein Series of z ∈ C
associated with Dirichlet characters χ1 and χ2 is as follows:

Eisenstein Series

Eχ1,χ2(z, s) =
1

2

∑
(m,n)=1

(q2y)sχ1(m)χ2(n)

| mq2z + n |2s
, Re(s) > 1

Through the Dedekind η-function, Eisenstein series give rise

to certain Dedekind Sums
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Dedekind Sums

The classical Dedekind Sum Sχ1,χ2(γ) is defined as follows:

Dedekind Sum

Sχ1,χ2(γ) =
τ(χ1)

πi
φχ1,χ2(γ),

where γ ∈ Γ0(q1q2) and φχ1,χ2(γ) = fχ1,χ2(γz)− ψ(γ)fχ1,χ2(z).

(fχ1,χ2(z) arises from the Fourier expansion of the completed

Eisenstein series)

Eχ1,χ2(γz) = ψ(γ)Eχ1,χ2(z)

ψ(γ) = χ1(d)χ2(d)
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SL2Z and Subgroups

Sχ1,χ2 : SL2Z→ H

SL2Z =

{(
a b

c d

) ∣∣∣∣ a, b, c, d ∈ Z; ad − bc = 1

}
.

Γ0(q) =

{(
a b

c d

)
∈ SL2Z

∣∣∣∣ c ≡ 0 (mod q)

}
.

Γ1(q) =

{(
a b

c d

)
∈ SL2Z

∣∣∣∣ a ≡ d ≡ 1 (mod q); c ≡ 0 (mod q)

}
.

Γ(q) =

{(
a b

c d

)
∈ SL2Z

∣∣∣∣ a ≡ d ≡ 1 (mod q); b ≡ c ≡ 0 (mod q)

}
.
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Reciprocity



The Fricke Involution

The Fricke Involution

ω = ωq1q2 =

(
0 −1

q1q2 0

)
The Eisenstein series is a pseudo-eigenfunction of the Fricke
involution:

Eχ1,χ2(ωz, s) = χ2(−1)Eχ1,χ2(z, s)

The Fricke involution swaps the characters associated to the

Dedekind sum; χ1 becomes χ2 and vice versa
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Reciprocity with Fricke

Theorem (SVY)

For γ =

(
a b

c d

)
∈ Γ0(q1q2), let γ′ =

(
d −c

−bq1q2 a

)
∈ Γ0(q1q2). If

χ1 and χ2 are even, then

Sχ1,χ2(γ) = Sχ2,χ1(γ
′).

If χ1 and χ2 are odd, then

Sχ1,χ2(γ) = −Sχ2,χ1(γ′).
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The Atkin-Lehner Involutions

The Fricke Involution

ω = ωq1q2 =

(
0 −1

N 0

)
The Fricke involution is associated to some N.

Let N = pq11 *. . .* prqr be the prime factorization of N. There is

an Atkin-Lehner involution ωpr associated to each prime factor pr
of N.
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The Atkin-Lehner Involution

Definition

Suppose that QR = N and (Q,R) = 1. We define an

Atkin-Lehner operator by

WQ =

(
Qr t

Nu Qv

)
,

where r, t, u, v ∈ Z, r ≡ r0 (mod R) and t ≡ t0 (mod Q) such

that Qrv − Rut = 1.
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Research Proposal

As the Atkin-Lehner involutions form a family of operators closely

connected to the Fricke involution, we found that the reciprocity

formulas of these Dedekind sums form a family of formulas, one

for each Atkin-Lehner involution,
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Generalized Reciprocity Formula with Atkin-Lehner

Let χ1, χ2 be primitive Dirichlet characters with moduli q1, q2,

respectively. The following theorem holds for any Atkin-Lehner

involution WQ and W ′Q such that WQγ = γ′W ′Q, and

γ, γ′ ∈ Γ0(q).

Theorem

Sχ1,χ2(WQ) + ξSχ′1χ
′
2
(γ) = ψ(γ)Sχ′1,χ

′
2
(W ′Q) + Sχ1,χ2(γ

′),

where ξ =
q2τ(χ

′
2)

q′2τ(χ2)
χ
(Q)
2 (−1)ψ

(Q)
(q
(R)
2 t0))ψ

(R)
(q
(Q)
2 r0))

and ψ(γ) = χ′1χ
′
2

If WQ = (WQ)′, the formula simplifies as

Sχ1,χ2(γ
′) = (1− ψ(γ))Sχ1,χ2(WQ) + ξSχ′1χ

′
2
(γ).
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Atkin-Lehner Involutions and Dirichlet Characters

Fricke Involution ω:

χ1 → χ2

χ2 → χ1

Atkin-Lehner Involution WQ associated to prime factor Q:
*Recall q1q2 = N = QR

χ1 = χ
(Q)
1 χ

(R)
1 → χ

(Q)
2 χ

(R)
1

χ2 = χ
(Q)
2 χ

(R)
2 → χ

(Q)
1 χ

(R)
2

The effect of Atkin-Lehner on Dirichlet Characters

χ′1 = χ
(Q)
2 χ

(R)
1 and χ′2 = χ

(Q)
1 χ

(R)
2
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Investigating the Kernel



The Kernel of Newform Dedekind Sums

Let χ1, χ2 be primitive Dirichlet characters with conductors q1, q2
respectively, with q1, q2 > 1. Then the kernel of the Dedekind

sum S(h, k) associated to χ1, χ2 is defined by:

Kernel associated to χ1, χ2

Kχ1,χ2 = ker(Sχ1,χ2) = {γ ∈ Γ0(q1q2) | Sχ1,χ2(γ) = 0}
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Reciprocity and the Kernel

If ψ(γ) = 1, the reciprocity formula simplifies to:

Sχ1,χ2(γ
′) = ξSχ′1χ

′
2
(γ)

So, γ′ ∈ Kχ1,χ2 ⇐⇒ γ ∈ Kχ′1,χ′2 .
Recall WQγ = γ′WQ. So γ = W−1Q γ′WQ.

γ′ ∈ Kχ1,χ2 ⇐⇒ W−1Q γ′WQ ∈ Kχ′1,χ′2
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Dedekind Sums and Elements of Kχ1,χ2

Definition

Sχ1,χ2(γ) =
∑

j mod c

∑
n mod q1

χ2(j)χ1(n)B1

(
j
c

)
B1

(
n
q1

+ aj
c

)
where

γ =

(
a b

c d

)
∈ Γ0(q1q2) with c ≥ 1 and χ1χ2(−1) = 1.

B1 is the first Bernoulli function defined by

B1(x) =

{
x − bxc − 12 i f x ∈ R\Z
0 i f x ∈ Z.

The value of Sχ1,χ2(γ) solely depends on the first column of γ, so

we are allowed to use the equivalent notation Sχ1,χ2(a, c).
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Known Kernel Elements

Proposition (Nguyen, Ramirez, Young)

Sχ1,χ2(1, c ′q1q2) = 0 for all c ′ ∈ Z

Figure: K3,5 for 1 ≤ c ≤ 10q1q2
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Known Kernel Elements

Proposition (Nguyen, Ramirez, Young)

For every (a, c) in the kernel, (c − a, c) is also in the kernel.

Figure: K3,5 for 1 ≤ c ≤ 10q1q2
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General Formula for Kernel Elements from Atkin-Lehner

Involutions

Theorem

Let χ1 and χ2 be nontrivial primitive Dirichlet characters modulo

q1, q2, respectively. Let WQ =

(
Qr t

Nu Qv

)
be an Atkin-Lehner

operator. Then Sχ′1,χ
′
2
(1− Ntkr,QNkr2) = 0 for all k ∈ Z.

Overview of Proof. We take γ ′ =

(
1 0

kq1q2 1

)
. Rearranging the relationship

WQγ = γ ′WQ from our reciprocity formula gives

γ = (WQ)−1γ ′WQ =

(
1− Ntkr Ntkr

QNkr 2 1 + Ntkr

)
.

We see that since γ ′ ∈ Kχ1,χ2 , γ ∈ Kχ′1,χ′2 . Thus, for all k ∈ Z,

Sχ′1,χ
′
2
(1− Ntkr,QNkr 2) = 0, as desired.
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General Formula for Kernel Elements from Atkin-Lehner

Involutions

Proposition

Let χ1 and χ2 be nontrivial primitive Dirichlet characters modulo

q1, q2, respectively. Let WQ =

(
Qr t

Nu Qv

)
be an Atkin-Lehner

operator. Then Sχ′1,χ
′
2
(−1− Ntkr,QNkr2) = 0 for all k ∈ Z.

Note. An easy modification of the proof of our last theorem

using γ′ =

(
−1 0

kq1q2 −1

)
completes the proof.
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Elements of the Kernel

Corollary

The kernel includes all pairs of elements (±1 + Nk,QNk) and

(±1 + (Q− 1)Nk,QNk)

Overview of Proof. Let the Atkin-Lehner operator WQ be such that

r = 1, t = 1. Then by the previous theorem,

Sχ′1,χ
′
2
(1− Ntkr,QNkr 2) = Sχ′1,χ

′
2
(1− Nk,QNk) = 0.

Using properties from SVY, it follows that

Sχ′1,χ
′
2
(1 + (Q− 1)Nk,QNk) = 0 and Sχ′1,χ

′
2
(−1 + Nk,QNk) = 0

Similarly, by the analogous proposition, Sχ′1,χ
′
2
(−1− Nk,QNk) = 0.

Then, using properties from SVY, it follows that

Sχ′1,χ
′
2
(−1 + (Q− 1)Nk,QNk) = 0 and Sχ′1,χ

′
2
(1 + Nk,QNk) = 0.

Altogether, these symmetries explain the pairs of kernel elements

(±1 + Nk,QNk) and (±1 + (Q− 1)Nk,QNk).
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Example K3,5. N = 15, Q = 3, R = 5

Our Atkin-Lehner matrix W3 =

(
3 1

15 6

)
. We calculate

(W3)
−1γ′W3

with k = 1 and

γ′ =

(
1 0

kq1q2 1

)
=

(
1 0

15 1

)
.

We obtain the product (
−14 −5

45 16

)
.
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Example K3,5. N = 15, Q = 3, R = 5

Our product was

(
−14 −5

45 16

)
.

(a, c) = (−14, 45)

Looking a (mod c), we

obtain (31, 45)

(c − a, c) = (14, 45),

By our proposition, we

obtain (16, 45) and (29, 45)
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Terminology Moving Forward
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Example: (±1 + tN,QN)

(±1 + tN,QN)

Figure: K7,11 for 1 ≤ c ≤ 10q1q2
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Example: (±1 + tkN, t2kN)

(±1 + tkN, t2kN)

Figure: K3,5 for 1 ≤ c ≤ 10q1q2
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Future Study

Figure: K3,13 for 1 ≤ c ≤ 10q1q2

Emily Van Bergeyk, Alexis LaBelle Advisor: Dr. Matthew Young Reciprocity and the Kernel of Dedekind Sums



Future Study

Figure: K7,3 for 1 ≤ c ≤ 10q1q2
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Future Study

Figure: K3,13 for 1 ≤ c ≤ 10q1q2
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