
Point Counting on Curves over
Prime Power Rings

Final Report for the Texas A&M Mathematics REU
Garrett Credi

1 Introduction
This project focused primarily on determining efficient methods to count the number of solutions a
given polynomial f ∈ Z[x, y] possessed over prime power rings Z⧸pkZ. By efficient methods, we seek
to develop an algorithm that, given a polynomial f ∈ Z[x, y], k ∈ N+ and p prime, will output the
number of points on f over Z⧸pkZ in time polynomial in log(p), k and deg(f). While there is already
an existing explicit algorithm, it possess to major complexity-related drawbacks that this project
sought to improve. While, unfortunately, no improvements were fully worked out, this document
describes the work I was able to do, the paths that I explored, and the ideas that I had not fully
worked out. Hopefully this will prove some use for future researchers examining this problem.

2 Background
The first part of this project was to understand the previous work done in understanding point
counts. The first simplification to make is to work one prime p at a time, and to relate the different
base rings Z⧸pkZ as k varies.

2.1 Truncation
The first connection to note is that the base rings themselves are related. Specifically, for k′ > k,
we have a truncation map πp,k′,k : Z⧸pk′Z → Z⧸pkZ that maps [n] 7→ [n mod pk].

Proposition 1. The maps πp,k′,k are well defined ring homomorphisms.

Proof. Firstly, assume that n, n′ ∈ Z both represent the same equivalence class in Z⧸pk′Z, i.e. that
n = n′ + rpk

′ . Then πp,k′,k([n]) = [n mod pk] = [n′ + rpk
′
mod pk] = [n′ mod pk] since pk

′ ≡ 0
mod pk.

πp,k′,k is also an obvious ring homomorphism since it is the projection map from Z⧸pk′Z to its

quotient
(
Z⧸pk′Z

)
⧸(pk).

1

These πp,k′,k do not just give maps on the base rings, but we will see that they also give rise to
maps on the given solution sets we care about.

Definition 2. Given f ∈ Z[x, y], p a prime, and k ∈ N+, let f̄ be the image of f when projecting to
Z⧸pkZ[x, y] and let Zp,k(f) =

{
ζ ∈

(
Z⧸pkZ

)2

| f̄(ζ) = [0]

}
. This is the solution set of f over

Z⧸pkZ.

Thus the goal of this project can be reinterpreted as determining efficient algorithms to determine
|Zp,k(f)|.

Importantly, since each of the ζ ∈ Zp,k′(f) live in (Z⧸pk′Z)
2, πp,k′,k can give an element in

(Z⧸pkZ)
2. Importantly, πp,k′,k will also map solutions over Z⧸pk′Z to solutions over Zk.

Theorem 3. The maps πp,k′,k give rise to natural maps πp,k′,k(f) : Zp,k′(f) → Zp,k(f).

The first property to note is the compositionality of the πp,k′,k.

Proposition 4. For k′′ > k′ > k we have that πp,k′,k ◦ πp,k′′,k′ = πp,k′′,k.

Proof. First note that πp,k′,k([1]) = [1] since 1 + rpk
′
= 1 + rpk

′−kpk. Then, since [1] additively
generates each of the Z⧸pkZ’s, we have that

πp,k′,k ◦ πp,k′′,k′([n]) = πp,k′,k ◦ πp,k′′,k′([1] + [1] + ...+ [1]) =

(πp,k′,k ◦ πp,k′′,k′)([1]) + (πp,k′,k ◦ πp,k′′,k′)([1]) + ...+ (πp,k′,k ◦ πp,k′′,k′)([1]) =

[1] + [1] + ...+ [1] = πp,k′′,k([1]) + πp,k′′,k([1]) + ...+ πp,k′′,k([1]) =

πp,k′′,k([1] + [1] + ...+ [1]) = πp,k′′,k([n])

We can then restrict the generality needed to prove Theorem 3 by noticing that πp,k′,k =
πp,k+1,k ◦ ... ◦ πp,k′,k′−1.

Proposition 5. If ζ ∈ (Z⧸pkZ)
2 has f̄(ζ) 6= [0] then for ζ ′ ∈ (Z⧸pk+1Z)

2 such that πp,k+1,k(ζ
′) = ζ,

f̄(ζ ′) 6= [0]

Proof. To begin, if πp,k+1,k(ζ
′) = ζ, we must have that ζ ′ = ζ + pkξ for some ξ ∈ Z⧸pk+1Z.

Since f(ζ + pkξ) ≡ f(ζ) + fx(ζ)p
kξx + fy(ζ)p

kξy mod pk+1 (easily proven by manipulation) if
the right hand side were to be zero, by choosing integer representatives for each term, we would
have to have that νp(f(ζ) + fx(ζ)p

kξx + fy(ζ)p
kξy) ≥ k + 1 where νp denotes the p-adic valuation.

However, since f(ζ) 6= 0, any representative of ζ would have to have νp(f(ζ)) < k. Then, by the
ultrametric inequality

νp(f(ζ + pkξ)) ≥ min{νp(f(ζ)), k + νp(fx(ζ)ξx), k + νp(fy(ζ)ξy)} with equality if the min is
attained uniquely. In this case, since νp(f(ζ)) < k we have unique attainment, so νp(f(ζ + pkξ)) =
νp(f(ζ)) < k < k + 1.

Therefore f(ζ ′) 6= 0.

2

Proof of Theorem 3. Applying the contrapositive of Prop 5, we see that if ζ ∈ Zp,k+1(f) then
πp,k+1,k(ζ) ∈ Zp,k(f). Therefore for k′ > k, πp,k′,k restricts to a well defined function on Zp,k′(f)
which we denote by πp,k′,k(f).

Remark 6. This idea of truncation comes from the behavior of πp,k′,k when writing a given n ∈ Z
in base p. For example, if n = d0+d1p+d2p

2+ ...+dk′pk
′ , then πp,k′,k([n]) = [d0]+ [d1p]+ [d2p

2]+
... + [dk−1p

k−1] + [dk · 0] + ... + [0] = [d0] + [d1p] + [d2p
2] + ... + [dk−1p

k−1]. Thus πp,k′,k really
truncates a class down to its first k p-adic digits.

2.2 Lifting
The importance of constructing these πp,k′,k(f) is to relate |Zp,k′(f)| to |Zp,k(f)| in order to set up
an inductive algorithm to point count.

The ‘base case’ for our purposes will be determining |Zp,1(f)| i.e. the number of points on f
over Fp. This is because the power of algebraic geometry can be readily applied in the case where
the base ring is a field, and we will see the application of one such method later in the paper. But,
for now, assume we have an efficient algorithm to determine |Zp,1(f)|.

However, not all Fp points ζ are made equal.

Definition 7. A point ζ ∈ Zp,1(f) is singular if ∂f

∂x
(ζ) ≡ ∂f

∂y
(ζ) ≡ 0 mod p. A point is non-

singular if it is not singular.

The importance of singularity can be seen as an extension of the reasoning present in the proof
of Proposition 5. Since the ability for a point ζ ∈ Zp,k(f) to have a lift to a point ζ ′ ∈ Zp,k+1(f)
depended on whether or not

f(ζ) + fx(ζ)p
kξx + fy(ζ)p

kξy ≡ 0 mod pk+1 (1)

While this equation may seem far removed from the finite field case, we can perform a few reductions
to see that this equation is truly over Fp. First, note that only the behavior of ξ mod p affects
Eqn. 1 since any term of order p or higher in ξ (i.e. any digits di for i ≥ 1) would give a term of
order pk+1 or higher, which reduces to 0 mod pk+1. Thus we can instead force “ξ ∈ F2

p”. This is
a slight abuse of notation, but it is a convenient one for what is to come. Secondly, if we assume
that ζ ∈ Zp,k(f) then f(ζ) = rpk. Thus, Eqn. 1 simplifies to

pk(r + fx(ζ)ξx + fy(ζ)ξy) ≡ 0 mod pk+1 (2)
r + fx(ζ)ξx + fy(ζ)ξy ≡ 0 mod p (3)

Which clearly reveals the dependency on whether or not ζ is a singular or non-singular point
on f over Fp. Importantly,

Theorem 8. If ζ is a nonsingular Fp point of f , then there are exactly pk−1 points ζ ′ ∈ Zp,k(f)
such that πp,k,1(ζ

′) = ζ.

Proof. As was done with the proof for 3, we will restrict to demonstrating that a point ζ ∈ Zp,k(f)
which is non-singular over Fp lifts to exactly p points in Zp,k(f).

As was noted above, to determine whether or not ζ + pkξ is a solution mod pk+1 depends on
whether or not Eqn. 3 is satisfied. Since ζ is assumed to be a nonsingular point over Fp we can

3

assume that either fx(ζ) 6= 0 mod p or fy(ζ)neq0 mod p. Without loss of generality, assume that
fx(ζ) 6= 0, as what follows can just be substituted in the case that fx(ζ) = 0 and fy(ζ) 6= 0. Then,
since Fp is a field, fx(ζ) possesses a multiplicative inverse, so we can re-arrange Eqn. 3 to

ξx = fx(ζ)
−1(fy(ζ)ξy − r) mod p (4)

Thus any choice of ξy determines a ξx. Since there are p choices for ξy, we get p unique lifts.
Now, since singularity is not affected by lifting (if ζ ≡ ζ ′ mod pk then their mod p reductions

are also equal πp,k′,1(ζ
′) = πp,k,1 ◦ πp,k′,k(ζ

′) = πp,k,1(ζ)), this allows us to inductively lift from
Zp,1(f) to Zp,2(f) to Zp,3(f) and so on, up to Zp,k(f). Since k − 1 lifts occurred, and each lifting
stage introduced p points for every point in the base, we get pk−1 lifts in total.

The case for singular Fp points is more subtle, but is still closely related to the case for non-
singular points. The important observation is that the expansion needed for the non-singular case
(Eqn. 1) is the first order Taylor-expansion of f at ζ. In order to work in the singular case, we will
need to use a higher order expansion.

Proposition 9. For ζ ∈ Zp,1(f) and ξ ∈ Zp,k−1(f),

f(ζ + pξ) ≡
∞∑

n=0

pn
∑

i+j=n
i,j≥0

1

i!j!

∂nf

∂xi∂yj
(ζ)ξixξ

j
y mod pk

Proof. As a function f : R → R this is an equality on the nose via Taylor’s Theorem, so it remains
to show that each of the coefficients are well defined over Z⧸pkZ. The only possible offenders are

the coefficients of the form pn

i!j!
, and we will have to demonstrate that n ≥ νp(i!) + νp(j!).

We now try to approximate νp(i!) =
i∑

m=1
νp(m). Note that νp(i!) =

∞∑
m=1

m·(number of multiples of pm less than i) ≤
∞∑

m=1

mi

pm
=

pi

(p− 1)2
where the first equality is just reintepreting νp(i!) =

i∑
m=1

νp(m) and the last

equality comes from using the generating function f(x) =
∞∑

m=1
pxm. Therefore n− νp(i!)− νp(j!) =

i− νp(i!) + j − νp(j!) ≤ i− p

(p− 1)2
i+ j − p

(p− 1)2
j = (1− p

(p− 1)2
)(i+ j) which is greater than

or equal to zero since 0 ≤ p

(p− 1)2
≤ 1. Therefore our expansion is valid, as all coefficients are

well-defined over Z⧸pkZ!

Now, just as we used the fact that ζ ∈ Zp,k(f) to get the factor of pk out of Eqn. 1, we will try
and factor out a high power of p as well.

Definition 10. Let s(f, ζ) = mini,j≥0

{
i+ j +

1

i!j!

∂nf

∂xi∂yj
(ζ)

}
, which is just the minimal power

of p that divides all the coefficients of f(ζ + pξ). Furthermore, let fζ,k(ξ) = p−s(f,ζ)f(ζ + pξ).

With that notation in hand, we arrive at the following fact.

4

Proposition 11. A point ζ ′ = ζ + pξ ∈ (Z⧸pkZ)
2 is a lift of ζ ∈ Zp,1(f) mod pk if and only if

fζ,k(ξ) ≡ 0 mod pk−s(f,ζ)

Proof.

f(ζ + pξ) = ps(f,ζ)fζ,k(ξ) mod pk

Which is zero if and only if fζ,k(ξ) is zero mod pk−s(f,ζ).

Remark 12. Eqn. 1 is extremely similar to this setup, where s(f, ζ) = k and fζ,k(ξ) = r+fx(ζ)ξx+
fy(ζ)ξy.

Remark 13. Additionally, if s(f, ζ) ≥ k, then fζ,k(ξ) = 0. This means that we would have p2(k−1)

points in Z⧸pkZ that lift from ζ ∈ Zp,1(f) since the first x and y coordinates of the lift are fixed,
while the remaining k−1 coordinates on both axes are free. Thus for such a ζ, we would get p2(k−1)

unique points in Zp,k(f).
If s(f, ζ) < k then every root of fζ,k(ξ) would lift to p2(s(f,ζ)−1) points in Zp,k(f) since ζ

determines the first x and y coordinate, ξ determines the next k − s(f, ζ) roots and so there are
2k − 2(k − s(f, ζ) + 1) = 2(s(f, ζ)− 1) coordinates that are free.

If we have a singular root ζ of f over Fp, we can use the above proposition to reduce our
exponent, and move to a different equation in order to simplify counting. We then arrive at a
recursive formula to determine the number of points on a curve over Z⧸pkZ.

Theorem 14. Let Sp(f) be the set of singular points of f over Fp, and np(f) be the number of
non-singular points of f over Fp. Then

|Zp,k(f)| = np(f)p
k−1 +

∑
ζ∈Sp(f)
s(f,ζ)≥k

p2(k−1) +
∑

ζ∈Sp(f)
s(f,ζ)<k

p2(s(f,ζ)−1)|Zp,k−s(f,ζ)(fζ,k)|

Note that this formula provides a recursive algorithm to compute the point count for any f, p, k.
However, the computational complexity of the corresponding algorithm is not on the order that we
would like it to perform on, and the goals of this project were focused on improving such bounds.
Unfortunately, we were unable to achieve such improvements, but we will describe avenues explored
during this REU, their pitfalls, and their viability for future exploration now.

3 Current Work
3.1 Determining |Zp,1(f)|
The first quantity necessary in the computation of 14 is the number of non-singular points on f
over Fp. However, a more tractable quantity to compute is the number of points on f , singular
or non-singular, over Fp. Knowing this quantity, along with Sp(f) allows us to compute np(f) as
|Zp,1(f)| − |Sp(f)|.

The main resource for computing this quantity came from (Harvey) with the following two
results.

5

Theorem 15 ((Trace formula) (Harvey) Theorem 3.1). Let F̄ ∈ Fq[x]d and let X be the hypersurface
in Tn

Fq
cut out by F̄ . Let r, λ and τ be positive integers satisfying

τ ≥ λ

(p− 1)ar
. (5)

Let F ∈ Zq[x]d be any lift of F̄ . Then

|X(Fqr)| = (qr − 1)n
λ+τ−1∑
s=0

αs tr(A
ar
F s) (mod pλ),

where

αs = (−1)s
τ−1∑
t=0

(
−λ

t

)(
λ

s− t

)
∈ Z,

and where AF s is regarded as a linear operator on Zq[x]ds.
and

Lemma 16 ((Harvey)Lemma 3.2). Let F ∈ Zq[x]d. The matrix of Aa
F s on Zq[x]ds, with respect to

the basis Bds, is given by
ϕa−1(Ms) · · ·ϕ(Ms)Ms,

where Ms is the square matrix defined by

(Ms)v,u = (F (p−1)s)pv−u

for u, v ∈ Bds, and where ϕ acts componentwise on matrices.
In the case of point counting on a curve X over Fp, we note that, since Harvey’s theorem works

over Fq where q = pa and point counts over Fqr we can set a = r = 1. Similarly, as the maximum
number of points on X over Fp is p2, we can compute |X(Fp)| mod p2, and thus we can work with
λ = 2. Thus we need to choose a τ such that τ ≥ λ

(p− 1)ar
=

2

p− 1
. To keep τ as small as possible,

we then set τ =

{
2, p = 2

1, p 6= 2
. Finally, with Harvey’s terminology, working with curves amounts to

working with homogenous polynomials over Z[x0, x1, x2] so n = 2.

Thus 15 simplifies to computing |X(Fp)| = (p − 1)2
τ+1∑
s=0

αs tr(AF s) mod p2. As this now

depends on computing tr(AF s), simplifying 16 will allow us to efficiently compute the point count.
Moreover, as s and τ can only take a finite set of values, we can compute αs in constant time via
a simple lookup table.

αs =



1, s = 0 ∧ τ = 1

−2, s = 1 ∧ τ = 1

1, s = 2 ∧ τ = 1

1, s = 0 ∧ τ = 2

0, s = 1 ∧ τ = 2

−3, s = 2 ∧ τ = 2

2, s = 3 ∧ τ = 2

6

Since a = 1, the product representation AF s = ϕa−1(Ms)...ϕ(Ms)Ms collapses to just AF s = Ms.
Importantly, since we don’t have to worry the matrix multiplications causing non-diagonal entries
of Ms to interact with the overall trace, we can restrict ourselves to computing only the diagonal
entries of Ms.

Since, by definition, (Ms)v,u = (F (p−1)s)pv−u (where the parenthetical notation on the LHS
denotes matrix entries and the notation on the RHS denoting the monomial coefficient of xpv−u

in F (p−1)s, the diagonal entries of Ms are (Ms)u,u = (F (p−1)s)pu−u = (F (p−1)s)(p−1)u. Translating
that from the parenthetical notation into the monomial notation: the diagonal entries of Ms are
exactly the coefficients of monomials in F s(p−1) that are of the form x(p−1) with x a degree s·deg(F)
homogenous monomial.

Tying it all together, tr(AF s) is then the sum of the coefficients of (p− 1) powers of s · deg(F)-
degree monomials present in the expansion of F (p−1)s. Finding a way to efficiently compute this
will provide an efficient method to compute |X(Fp)| (hopefully faster than √

p log1+ϵ(p)-time that
Harvey provides).

(Note: for some reason Harvey’s definition of |X(Fp)| is the number of points of X over Fp none
of whose coordinates are zero. To determine the true amount, we would first compute |X(Fp)| by
(the modified version of) Harvey’s algorithm and then determine the number of roots of F (x, 0, 1)
(denoted Nx) and F (0, y, 1) (denoted Ny). Then the true number of roots would be |X(Fp)|+Nx+

Ny −

{
1, F (0, 0, 1) = 0

0, otherwise
where the subtraction is to prevent double counting of the root (0, 0) if it

is present.)

3.1.1 Example

For example, let’s take f(x, y) = x2 + y2, so F (x, y, z) = x2 + y2 and let’s work over general p.

Then F (p−1)s =
(p−1)s∑
i=0

(
(p−1)s

i

)
x2iy2((p−1)s−i). If p = 2 then F (p−1)s = F s so the sum of (p − 1)

power monomial coefficients is just the sum of the coefficients thus tr(AF s) = F (1, 1, 1)s = 2s. So

|X(F2)| =
2+1∑
s=0

αs tr(AF s) = 1 + 0 · 21 − 3 · 22 + 2 · 23 = 1 mod 22. This gives the total number of

nonzero roots ((1,1) being the only one), and finding the other roots will give us 1 additional root
(0,0) thus giving us 2 roots over F2.

For higher p, we need only to be concerned with s = 0, 1, 2. As above, if s = 0, tr(AF s) = 1.

For s = 1, F (p−1) =
p−1∑
i=0

(
p−1
i

)
x2iy2(p−1−i). For this to be a p− 1 power, we need that both

{
2i ≡ 0 mod p− 1

2(p− 1− i) ≡ −2i ≡ 0 mod p− 1

which are the same equation, so we need to characterize the i such that 2i ≡ 0 mod p − 1. It
is easy to see that the only i that satisfy this equation (that are in the range 0 ≤ i ≤ p − 1) are
i = 0,

p− 1

2
, p− 1. Therefore tr(AF 1) =

(
p−1
0

)
+
(p−1

p−1
2

)
+

(
p−1
p−1

)
= 2 +

(p−1
p−1
2

)
.

For s = 2, F (p−1)·2 =
2(p−1)∑
i=0

(
2(p−1)

i

)
x2iy2((2(p−1)−i)), which, by a similar argument as above,

7

implies that the trace is tr(AF 2) =
4∑

i=0

(2(p−1)
i(p−1)

2

)
therefore

|X(Fp)| = (p− 1)2(1 · 1− 2 · (2 +
(
p− 1
p−1
2

)
) + 1 ·

4∑
i=0

(
2(p− 1)
i(p−1)

2

)
) + 1 mod p2

3.1.2 Approaches to Computation

While the above computation may suggest that computing the sum is an easy calculation, in
general it is much more subtle. For example, take F (x, y, z) = zy2−x3− zx2 and p = 3. While the
monomials present in F are zy2, x3, and zx2, F p−1 = x6+2x5z+x4z2−2x3y2z−2x2y2z2+y4z2 =
((x3)2+(zx2)2− (xyz)2+(zy2)2)+2x5z−2x3y2z which has p−1 powers of zy2, x3, and zx2 as well
as xyz. Occurrences like these require more subtle methods to determine these coefficient sums.

The most fruitful method we have found involves a reinterpretation as a linear system of equa-
tions. Note that if F (x, y, z) =

n∑
i=1

cix
ei then

F p−1 =
∑

m1+m2+...+mn=p−1
mi≥0

c′ix
m1e1+m2e2+...+mnen

Thus, if we want to determine the coefficient of m(p−1) for some deg(F) monomial m, we could
first determine which mi’s give rise to it. More formally, if ei = 〈αi, βi, γi〉 (so that xei = xαiyβizγi)
and we’re attempting to determine the coefficient of (xaybzc)p−1 then we would like to determine
the mi’s so that

∑
i

mi

αi

βi

γi

 = (p− 1)

ab
c

 (6)

∑
i

mi = (p− 1) (7)

While it would seem natural to want to solve for the mi’s over N, solving such linear system seems
to be NP-complete as it is an instance of the Knapsack Problem. Instead, we could either solve
the system over Z, and carefully add mi’s that live in the corresponding nullspace to get a solution
vector m = 〈mi〉 ∈ Nn. For possible information about this, check this MathOverflow question.

Additionally, we could also note that since the mi’s are positive and sum to p−1, 0 ≤ mi ≤ p−1
so we could solve the system over Fp as well. However in this case, we would want to be able to
solve Equation 6 ’over Fp’ while solving Equation 7 ’over Z’.

3.2 Dealing with non-squarefree-curves
Another important element of 14 is being able to iterate over Sp(f) for the recursive steps. This
would then lead to a complexity factor of |Sp(f)| for the corresponding algorithm, and, in bad cases,
would lead to a factor of p in the complexity. Since we desire to have log(p) complexity, this case
is particularly troubling.

Before we discuss the bad cases, let us first examine the good cases.

8

https://mathoverflow.net/questions/427477/positive-points-on-a-shifted-integer-lattice

Definition 17. We say that a polynomial f ∈ R[x, y] over a U.F.D. R is square-free if it factorizes
as f =

∏
i f

ei
i where each ei = 1 (with fi irreducible and pairwise relatively prime).

For such an f , it is easy to demonstrate that |Sp(f)| does not add any factors of p to the
complexity. This is due to the following result:

Proposition 18. Let f ∈ R[x, y], and fx, fy the formal derivatives with respect to x and y. Then
f is not square-free if and only if gcd(f, fx, fy) 6∈ R.

Proof. Firstly, assume that f is not square free so f =
∏

i f
ei
i . Assume without loss of generality

that e0 > 1. Then fx = (
d

dx
f0)(e0f

e0−1
0)(

∏
i ̸=0 f

ei
i) + fe0

0 · d

dx
(
∏

i ̸=0 f
ei
i). Since e0 > 1, e0 − 1 > 0

so f0|fx and f0|f so f0| gcd(f, fx). A similar line of reasoning demonstrates that f0| gcd(f, fy).
Therefore f0| gcd(f, fx, fy).

Now assume that gcd(f, fx, fy) = g where g 6∈ R. Without loss of generality, assume that g
is irreducible (otherwise we can choose an irreducible factor of g and proceed). Then, since g|f ,
we must have g = fi for some i. Again, after possible relabeling, assume that g = f0. Then, by
using the same expansion of fx as above, we see that e0 − 1 > 0 so e0 > 1 and therefore f is not
square-free.

Theorem 19. For f square-free, |Sp,1(f)| = O(deg(f)2).

Proof. By Bezout’s Theorem (see (Cox et al.)Thm, 7 p. 456, for C and D projective curves
without common components, |C ∩D| ≤ deg(C)deg(D). By 18, for f square free at least one of
gcd(f, fx), gcd(f, fy) is a scalar, assume without loss of generality that gcd(f, fx) ∈ R, so the curves
they represent have no common components. Since |Sp,1(f)| = |{ζ ∈ F2

p|f(ζ) = fx(ζ) = fy(ζ) = 0}|,
|Sp,1(f) ≤ |{ζ ∈ F2

p|f(ζ) = fx(ζ) = 0}| ≤ deg(f)deg(fx) ≤ deg(f)2.

Importantly, for f not square-free, the above result fails terribly. For example, if g defines
a genus 0 curve, then there are immediately p − 1 points on g over Fp by a simple application
of the Hasse-Weil bound. Then, for f = g2, every point on g is a singular point on f and so
|Sp,1(f)| = O(p) which adds terrible complexity onto the runtime of the point counting algorithm.

3.2.1 Current Work

Initially, one may think that points on g may lead to similar behavior, so iterating over the O(p)
many points on it could be replaced by a single ‘generic reduction’. I.e. given a curve f ≡

∏
i f

ei
i

mod p with, for example, e0 > 1, and two points ζ, ζ ′ on f0 one might expect that s(f, ζ) = s(f, ζ ′)
and that |Zp,k−s(f,ζ)(fζ,k)| = |Zp,k−s(f,ζ′)(fζ′,k). However, one can construct cases where two points
on f0 with differing p-adic valuations νp(f0(ζ)), νp(f0(ζ ′)) lead to different s values and point counts.
Even worse, we can find two points such that their behavior on f0 is exactly the same, but that
give different s values and point counts upon reduction.

This lead to the notion of a (g, p, k) valuative decomposition

Definition 20. For f ∈ Z[x, y] such that g2|f mod p, a (g, p, k) valuative decomposition is an

identity of the form f ≡
k−1∑
i=0

pigeihi mod pk.

9

This decomposition should allow for a continuation of the ideas above, i.e. partitioning Sp,1(f)
into groups that ‘share the same behavior’ with respect to this decomposition, and continuing from
there. However, such a process may be quite complicated, but we nonetheless wish to offer it as a
method in the case that something fruitful may come of it.

We can also use such a decomposition to examine |Zp,k(f)∩Zp,k(g)| which, by inclusion-exclusion
methods may allow us to compute |Zp,k(f)|. In the cases where ei > 0, it is quite obvious that
|Zp,k(f) ∩ Zp,k(g)| = |Zp,k(g)| but something more interesting happens in the case where there is
at least one ei = 0.

To begin, note that e0 > 0 since we stipulate that g2|f mod p, so e0 ≥ 2. Then we rearrange
the decomposition in the following manner f ≡

∑
i,ei=0

pihi +
∑

i,ei>0

pigeihi. If ζ ∈ Zp,k(g) then

f(ζ) ≡
∑

i,ei=0

pihi mod pk. However, since min{i|ei = 0} = ι > 0,
∑

i,ei=0

pihi = pι
∑

i,ei=0

pi−ιhi.

Therefore, forcing f(ζ) ≡ pι
∑

i,ei=0

pi−ιhi ≡ 0 mod pk is equivalent to forcing
∑

i,ei=0

pi−ιhi ≡ 0

mod pk−ι.
This allows us to reduce the system{

f ≡ 0 mod pk

g ≡ 0 mod pk

to the system g ≡ 0 mod pk∑
i,ei=0

pi−ιhi ≡ 0 mod pk−ι

which may offer more tractability in solving it.
Possible methods towards approaching such a system might be to solve both equations mod pk−ι

using a modified version of Hensel lifting, keeping track of how many solutions are singular and
nonsingular points of g, and then lifting the nonsigular mod pk−ι points to unique points mod pk

while doing something for the singular points. Hopefully this leads to something fruitful.

10

4 References

Works Cited
Cox, David A., et al. Ideals, Varieties, and Algorithms. Springer International Publishing, 2015,

doi:10.1007/978-3-319-16721-3.
Harvey, David. Computing zeta functions of arithmetic schemes. 2014. doi:10.48550/ARXIV.1402.

3439.

11

https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.48550/ARXIV.1402.3439
https://doi.org/10.48550/ARXIV.1402.3439

	Introduction
	Background
	Truncation
	Lifting

	Current Work
	Determining |Zp,1(f)|
	Example
	Approaches to Computation

	Dealing with non-squarefree-curves
	Current Work

	References

