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1 Introduction

Suppose one is asked to pick a random number. For simplicity, say we are
working in binary and that we know how many digits this random number should
have. Thus generating a random number is equivalent to generating a sufficiently
random sequence of bits – zeros and ones. To choose such a ’random’ sequence
requires both a standard of randomness and also a deterministic method of
producing a sequence to fit that standard. Pseudo-random generators (PRG’s)
are the method, (so named because they are deterministic and hence not truly
random) and the standard they meet is defined by unpredictability. Intuitively,
if it is not computationally feasible to predict what the next bit of a sequence
is (given the first however many), then we can say it is unpredictable and thus,
in that sense, pseudo-random.

The topic of this paper is to generalize the results of a paper by Blum and
Micali [BM84], in which rigorous parameters are given for these ideas of being
hard to predict, pseudo-random computationally infeasible and so on. Their
work focuses on the assumed hardness of the Discrete Logarithm Problem, but
we provide here a more abstract approach for how their style of PRG’s, one
which attempts to turn a given function (meeting some criteria) into such a
random generator. We also provide more general ideas for assessing how un-
predictable a PRG is, or how compututationally infeasible it is to predict it, as
tools for assessing the value of a given PRG. We also assess the feasibility of
using a trinomial as a PRG generator utilizing some conditional results as well
as some experimental results. Finally, we note side results that were uncovered
during research, future directions and related open questions.

Note that, for shorthand, when F = {fi} is a set of functions, we say a
function g is on O(F ) if ∃fi ∈ F such that g ∈ O(fi): and similarly for o, ω,
and Ω notation.
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2 Background

2.1 Generalized Pseudo-Random-Generators

Definition 2.1. A ΦΓΥ pseudo-random bit generator (ΦΓΥ−PRG), defined
for hardness class Γ and families of functions Φ,Υ, is a family of functions
G := {Gn : {0, 1}n → {0, 1}Q(n)}, with Q : N → N an increasing function, with
the property that setting (y1, ..., yQ(n)) := Gn(x1, ..., xn) satisfies this: for every
i ∈ {0, ..., Q(n)− 1}, every algorithm A ∈ Γ, and every ϕ ∈ Φ,

|Prob(x1,...,xn)∈{0,1}n [A(y1, ..., yi) = yi+1]−
1

2
| ∈ o(

1

ϕ(n)
),

where each yi is computable in time on O(Υ).

Here we assume the input is an n-bit binary integer x, rather than a sequence.
We associate with any Γ a set of functions F , where Γ is the set of all algorithms
computable in time in the order of some function in F (on n). Now, because
circuits are algorithms of arbitrary intricacy, or can be efficiently transformed
into such, the following is an equivalent way of defining a PRG.

Definition 2.2. A FΦΥ pseudo-random bit generator (FΦΥ−PRG), where
F,Φ, and Υ are sets of functions, is a family of functions G := {Gn : {0, 1}n →
{0, 1}Q(n)}, with Q : N → N an increasing function, with the property that
setting (y1, ..., yQ(n)) := Gn(x1, ..., xn) satisfies this: for every i ∈ {0, ..., Q(n)−
1}, every family o circuits C = {Cn} with number of circuits on O(F ), and
every ϕ ∈ Φ,

|Prob(x1,...,xn)∈{0,1}nCn[y1, ..., yi] = yi+1]−
1

2
| ∈ o(

1

ϕ(n)
),

where each yi is computable in time on O(Υ).

2.2 α, β-Periodic

The outputs of a ΓΦΥ−PRG we will call ΓΦΥ-PRG sequences. All such
sequences are ultimately periodic [cite(BM)]. Let α and β be integers. A ΓΦΥ-
PRG sequence is (α, β)-periodic if it becomes periodic, with period length less
than β, after at most α bits. To be unpredictable, we need α + β < Q(n), the
length of the outputted message, lest an adversary be able to often predict the
next bit by using the periodicity of the sequence. For simplicity, we will assume
all PRG sequences have this property of α+ β < Q(n).

2.3 Predicate

Let Sn be a subset of the n-bit integers, with i ∈ Sn. Let Di be a subset of
the integers with at most n bits. We call B a set of predicates if B = {Bi :
Di → {0, 1}|i ∈ Sn, n ∈ N}. Essentially, each Bi assigns elements of Di a
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binary value. Every element of Di is represented with n bits, if necessary by
prefixing 0’s. We call a given i an n-bit input ”seed”.

2.4 Inputs

Let I = {In|n ∈ N} denote the set of all inputs to a set of predicates B, where
In = {(i, x)|i ∈ Sn and x ∈ Di}. An element in In is called an input of size n.

2.5 υ-Accessible

We say a predicate B is υ-accessible if there exists constant c0 and probabilis-
tic algorithm A such that, on input length n, A has expected run in time υ(n),
A outputs “?” with probability ( 12 )

c2 , and whenever A does not output “?”, it
outputs a pair (i, x) ∈ In with uniform probability among elements of In.

2.6 Φ1Φ2-Unapproximable

Let B be a set of predicates and Φ1, Φ2 be sets of functions. Let Cϕ1
n denote

the size of the smallest circuit C = C[·, ·] that computes Bi(x) correctly for
at least a fraction of 1

2 + 1
ϕ1(n)

of all (i, x) ∈ In. Such a circuit C is said to
1

ϕ1(n)
-approximate B (where ϕ1 ∈ Φ1). We say B is Φ1Φ2-unapproximable if,

for any ϕ1 ∈ Φ1, C
ϕ1
n is not on the order of any function in Φ2.

Unapproximability is thus defined in terms of resistance to being efficiently
solved (with a certain degree of accuracy) by circuits, but this easily generalizes
to algorithms. Given a hardness class Γ of algorithms with run time on the order
of some function in Φ1, we say this: B is ΦΓ2-unapproximable if no algorithm
in Γ can solve

Put another way, such a B is Φ1Φ2-unapproximable if, for all ϕ1 ∈ Φ1 and
ϕ2 ∈ Φ2, there exists an infinite set of integers T such that for all n ∈ T , any
circuit calculating Bi(x) correctly for at least a fraction 1

2+
1

ϕ1(n)
of all (i, x) ∈ In

has more than ϕ2(n) gates.

3 Sufficient Conditions for a ΦΓΥ-PRG

Using the above, we generalize Blum and Micali’s Theorem 2 [BM84] to pro-
vide measurements on how good a given PRG is and what aspects of a predicate
and function are sufficient for the formulation of a PRG.

[Theorem 1] LetB = {Bi : Di → {0, 1}|i ∈ Sn, n ∈ N} be a ΦF -unapproximable
and υ-accessible set of predicates (where F is as defined earlier in relation to Γ)
with a corresponding set of “friendly functions f = {fi|i ∈ Sn, fi : Di → Di},
where I = {(i, x)|n ∈ N, i ∈ Sn, x ∈ Di} is the set of all inputs relative to
B. Then the following conditions are sufficient to ensure the existance (as con-
structed in the proof) of a ΦΓΥ− PRG (call it G).

3



1. fi is a permutation on Di (for all i ∈ Sn)

2. f : (i, x) ∈ I → Di is on the order of some family of functions Υ

3. h : (i, x) ∈ I → Bi(fi(x)) ∈ O(Υ)

4. υ ∈ O(Υ).

Proof. Let n ∈ N. Because B is υ-accessible, let c0 and A be its relative constant
and probabilistic algorithm. Choose some function Q ∈ Υ and set c = Q(n), the

desired length of the sequence, and n′ = ⌊n
1
c1 ⌋. The following constitutes the

ΦΓΥ − PRG, G, which stretches a random n-bit seed r to a Q(n)-bit pseudo-
random sequence.

[Generator G] Run A on r and define xl as the l
th bit of r, for all l ∈ {1, · · · , n}.

If A’s output is ”?” then generate the sequence consisting of c 0’s. Else A
has selected an input (i, x) from In with uniform probability. Now, compute
sequence T(i,x) = x, fi(x), f

2
i (x), · · · , fc

i (x). Then, from left to right, extract

one bit from each element in T(i,x) via Bi(f
j
i (x)), from j = c to 1. (That is,

reverse the sequence and apply the predicate to every element in T(i,x), thus
attaining our desired G(x1, · · · , xn) = (y1, · · · , yQ(n))).

For simplicity, assume A never outputs “?” and n = n′. Thus G takes the
random n-bit input r and stretches it into the sequence s1, · · · , sc, where sj =

Bi(f
c−j+1
i (x)) (for j ∈ 1, · · · , c).

First we prove G is computable in time on O(Υ). We assumed fp(x) (evalu-
ating our binomial at a point) and h(p, x) (applying the predicate of f(x) given
x) are both on O(Υ). Thus, given (p, x), G computes each sj in time on O(Υ),
since Υ is closed under addition. To get (p, x) from our given seed r requires
time υ(n) ∈ Υ. Since the sum of three elements in Υ is still on O(Υ), we see G
computes each sj in time on O(Υ) from the given r.

Now we prove G is cryptographically secure (as per Definition 2.1). Let
X ∈ Φ1 and Z ∈ F . We want to prove that, when n is large enough, for
any k ∈ {1, · · · , Q(n)}, any circuit C with ≤ Z(n) gates, when supplied with
s1, · · · , sk, cannot “predict” sk+1 with probability greater than 1

2 + 1
X(n) (over

all n-bit inputs (i, x) ∈ In). This is even if the adversarial algorithm knows
B, f, and h: as long as it does not know the seed. If proved, this would imply
that neither could any algorithm in Γ predict sk+1 with such accuracy.

Assume, by contradiction, that there exists an infinite family F ∈ N such
that for every n ∈ F , there exists a circuit Cn with less than Z(n) gates which
predicts some sk+1, given from s1, · · · , sk for a fraction ≥ 1

2 +
1

X(n) of all (i, x) ∈
In. Then the following algorithm D ∈ Γ, making calls to the circuits Cn, can

1
X(n) -approximate B for inputs (i, x) ∈ In, where n ∈ F .

[Algorithm D] Given (i, x) ∈ In, where n ∈ F , generate the sequence (b1, · · · , bk) =
(Bi(f

k
i (x)), · · · , Bi(fi(x))) as outlined in algorithm G. Input the first k bits to
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the circuit Cn and set the output as sk+1. Predict by D(i, x) = sk+1.

Because Cn can 1
X(n) -approximate B for n ∈ F , and because bi is we see

D[x, i] correctly predicts sk+1 for a fraction at least 1
2 + 1

X(n) of the (i, x) ∈ In,

and it runs in time on O(F ). This contradicts the ΦF -unapproximability of B.

4 Neccessary Conditions for a ΦΓΥ-PRG

Observe that we need Υ ⊆ F . For if, by contradiction, we had F ⊊ Υ, then
there may be some function g ∈ Υ which can 1

ϕ(n) -approximate B for some

ϕ ∈ Φ. Since G generates bits in time O(Υ), this means it could take longer to
calculate bits of G than to 1

ϕ(n) -approximate B. In other words, F ⊊ Γ allows

for the possibility of it taking less time for an adversary to break (predict) G
than it does for the encrypter to even compute G.

By τf (n) and τh(n), we denote, respectively, the time it takes to calculate
f(i, x) and h(i, x), using the fastest known algorithms, for any (i, x) ∈ In.

Let ∆ denote the set of all functions on O(δ(n) + τh(n)), where δ(n) is the
time it takes the fastest known algorithm to solve for x, given only fi(x), for all
(i, x) ∈ In.

Consider what would happen if ∆ ⊆ F . Then, if some predicate B is ΦF -
unapproximable (for some Φ), this means no algorithm in ∆ (because ∆ ⊆ F )
can solve Bi(x) for a certain fraction of the inputs (i, x) ∈ In. For a given (i, y) ∈
In, we can find an x ∈ Di such that f(i, x) = y in time δ(n), by assumption.
So in time δ(n) + τh(n), we can find this x and then take Bi(f(i, x)) = B(y).
That is, in time δ(n) + τh(n) ∈ ∆ ∈ F , we can solve for Bi(y) given only y, for
any y ∈ Di: a contradiction of B being unapproximable by F . Thus if ∆ ∈ F ,
no predicate can be ΦF -unapproximable. To make a PRG, then, we require:

Υ ⊆ F ⊊ ∆.

[Remark] If δ(n) ∈ O(n2 log(n)), then fp cannot be used to create a PRG (for
any predicate) as outlined in the definition of ∆, since we require Υ ⊆ F ⊊ ∆.
That is, for this binomial to create a PRG, we need no algorithm running in time
on O(log2(p) log(log(p)) to be able to solve for a root of f(x) = xa + cxb − y ∈
F∗
p[x]. Trinomial solving in O(log2(p) log(log(p))) time renders binomials useless

for forming PRG’s.

The following is the general strategy one must take to construct a ΦΓΥ-PRG
in the form of Blum and Micali (as outlined in Theorem 1).

1. Given an arbitrary n-bit integer, find the time it takes to generate an
element (i, x) ∈ (Sn, Di) with uniform probability (over In). This gives
ϕ(n).
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2. Find the minimal times τf (n) and τh(n) it takes to calculate f(i, x), and
h(i, x) respectively (and also Di) for any i ∈ Sn.

3. Set Υ as all functions on O(τf (n) + τh(n) + ϕ(n)).

4. Consulting current literature, find the fastest time it takes to solve for x
given only f(i, x) for all (i, x) ∈ In. Call this δ(n) and define ∆ as the set
of functions on O(δ(n) + τh(n)).

5. If Υ ⊊ ∆, find Φ and F such that Υ ⊆ F ⊊ ∆ andB is ΦF -unapproximable.
This F will define Γ.

5 Binomial PRG’s and Trinomial Hardness

We now consider how strong a certain binomial is in forming PRG’s. Given
current bounds on computation, what Φ, Γ, and Υ we can choose to fit the
hypotheses on Theorem 1? We use the above outlined approach.

5.1 Binomial PRG

Definition 5.1. Let Sn be the set of n-bit primes. For each p ∈ Sn, choose
a, b, c ∈ F∗

p such that gcd(a, b) = 1 and gcd(a, p − 1), gcd(b, p − 1) ≥ 2. Define
the binomial friendly function

fp := xa + cxb ∈ F∗
p[x]

together with its inputs Dp as a subset of ran(fp) such that |Dp| ≥ Q(n) and
Dp forms a cycle under fp. That is, ∀ x, y ∈ Dp, ∃ i ∈ {0, · · · , |Dp| − 1} such
that y = f (i)(x) (the i’th iterate of x under fp). Then define the corresponding
predicate Bp : Dp → {0, 1} by

Bp(f(x)) =

{
1 if x ≥ median(Dp)

0 otherwise.

The resulting PRG (formed via Theorem 1) is the Binomial PRG.

The most computationally expensive aspect of this friendly function is that
we must, given a prime p, find such an (a, b, c) ∈ (F∗

p)
3 and Dp where fp is a

permutation on Dp and |Dp| ≥ Q(n).

Recall that Q(n) ≥ n. If |Di| < n, then our PRG sequence (for an n-
bit x) is (y1, · · · , yDi , · · · , yQ(n)), which is (α, β)-periodic where α + β ≥ |Di|.
As mentioned earlier, and in Blum and Micali’s paper, the algorithm which
predicts the next bit of this PRG sequence by guessing either randomly or in
order to preserve any existing periodicity will predict next-bits with troublesome
accuracy for all such n. Thus we require that Q(n) ≥ n and that |Di| ≥ n (past
some n0).
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One choice which has been studied already is the special form fp(x) = cxd+x.
The simplest case of this is when f is a bijection on F∗

p; that is, by [Kai Lu],

when d = p+1
2 and 1−c2 is a square. Observe, however, that xd = x

p−1
2 +1 = ±x.

Thus fp(x) = cxd + x = (1 ± c)x, so given a y ∈ F∗
p, to find the x ∈ F∗

p such
that f(x) = y, simply test x = y(1± c)−1. Thus this d cannot be used for our
purposes as a friendly function, regardless of c.

By previous REU students, it is known that the number of roots of fp is
≤⌋

√
p− 1, and it is conjectured (based on experimental data) that p being

prime means the number of roots of fp is on O(n), where p is n-bits. This
bounds the discrepency of fp over F ∗

p , thereby also bounding ran(fp).

5.2 Accessibility of B

Given an n-bit integer, how long does it take to uniformly choose an input
(p, x) to our binomial, and how long does computing f(p, x) and h(p, x) take?
This requires finding an n-bit prime p, an x ∈ F∗

p, and a, b, c, and Dp such that

xa + cxb is a permutation on Dp? This must be doable faster than 2
n
2 log(n).

To begin, note that fp : x ∈ Dp → Dp is on O(n2 log(n)) according to current
computation bounds (December 2021) [RZ21].

Now, given an n-bit input r, how much time does it take to uniformly choose
an n-bit prime p? By Solovay and Strassen’s work on Monte-Carlo primality
tests [SS77], we can check if r is prime (with 0 chance of false positive) on
time on O(log(n)) (to be precise, 6 log2(n)). The chance of a false negative,
when the Solovay-Strassen Primality test is applied m times, is 2−m. By the
Frequency of Primes Theory, the expected number of random samplings (among
n-bit integers) before picking a prime is on O(n). So if we do k ∈ O(n) many
random samplings of r and perform the SSP test m = 1, 000 times for each
(to make the finer details of the statistics negligable), we see that it takes time
O(n2 log(n)) to choose such a p, with the result uniform over n-bit primes. Thus
the time it takes to uniformly select a (p, x) ∈ In is on O(n + n2 log(n)), or,
simply, O(n2 log(n)).

A necessary condition for a ΦΓΥ-PRG is that δ ̸∈ O(Γ). The best known
δ(n) is 2n, and Υ (which requires time to compute fp given a, b, c, and Dp) is
at least n2 log(n). Hence we need to be able to find a, b, c, and Dp (such that
xa + cxb is a permutation on Dp) in time on O(2n/2 log(n)) = O(p log(log(p))).
Finding this Dp systematically is the primary difficulty of this PRG.

One method* is, for each p, to pick an arbitrary a, b, c, x ∈ F∗
p such that

gcd(a, p − 1), gcd(b, p − 1) ≥ 2, gcd(a, b) = 1, and c is prime. Then, iterate x

under xa + cxb until finding i < j such that f
(i)
p (x) = f

(j)
p (x). Then j − i (the

cycle length) must be in (Q(n), 2n ], so that |Dp| ≥ Q(n) and iterating through
fp(x) (doable on O(Υ)) takes time significantly less than on O(δ(n)) (hence the
added n in the denominator of the upper bound). We also need i ∈ [0, ]. These
bounds demand most seeds to quickly map to a cycle of proper length.
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For simplicity, assume Q(n) = n and Φ = POLY . For this method to effi-
ciently find us an a, b, c, and Dp, we need a fraction > 1− 1

n of all x ∈ F∗
p to fit

the above bounds.

5.3 Experimental Results

We will begin this section with a comparison of three equations over the finitie
field Fp with p = 1009. These experiments highlight three things:

1. Some a, b, c result in predictable behavior over the field, making them easy
to approximate.

2. Even these bad a, b, c can have discrete Fourier transforms that seem ran-
dom (look like white noise); hence discrete Fourier Analysis is not sufficient
to identify Pseudo-Random Behavior.

3. Suitable cycles are possible with certain a, b, c resulting in valid Dp.

The following figures contain, respectively,an iteration sequence plot over an
arbitrary input with the length of the sequence being p, the output of the func-
tion itself for each element in Fp, a Discrete Fourier spectrum of that iteration,
and a functional graph of the equation over the finite field. Notice that each out-
put plot and iteration plot map from F ∗

p to F ∗
p . Finally, the functional graphs

are directed graphs where each node is an element of F ∗
p and each edge shows

where the element maps to under fp. A close up is given to illustrate particular
behavior.

The exponential f(x) = 11x in figure 1 is included as a first example as
much of our work compares to the DLP-PRG. Notice the cycles in the iteration
graph. Additionally the low visual discrepancy shown in the iteration plot is
not picked up by the discrete Fourier analysis. In other words, the seeming
random behavior despite cycling seemingly fools classical discrete Fourier anal-
ysis. Additionally, as will be seen, the number of components of the functional
graph is relatively small. This means it it seems easier to get into a cycle in the
exponential case. This result is expanded below.

Despite being quickly shown to not be a good choice for c, d, figure 2 of
f(x) = x + cx(p+1)/2 is interesting. It illustrates graphically, linear behavior
plus noise over the whole field, which first caused us to realize the frailty of
that choices security. Despite this, the iteration behaviour looks fairly random.
Similar to the exponential case, the discrete Fourier analysis is not able to
identify this randomness and has output similar to white noise. Finally, even
in this permutation scenario, the number of components is higher than the
exponential case, with many small cycles.

Figure 3 of f(x) = x7 + 606x505 shows what we have found to be the most
common behavior. Typically, there is fairly random behavior over the whole
field, but, small cycles are quickly found. Indeed, the functional graph has 936
components in this example, which suggests that suitable large cycles don’t exist
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Figure 1: f(x) = 11x mod 1009, p = 1009, Itervalue (range of values under
itaration) : 582(top left), Number of Components (in functional graph): 10
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Figure 2: f(x) = x + cx(p+1)/2, p = 1009, Itervalue: 706(top left), c = 606
satisfies 1− c2 = d2 where d ∈ Fp, Number of Components: 27
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Figure 3: f(x) = x7+606x505, p = 1009, Itervalue: 756 (top left), Components:
936

in this choice of a, b, c. Additionally, the shortness of the cycle chosen is able
to be picked up by the discrete Fourier analysis, with some very clear structure
being shown. There seems to be some bound relating discrepancy to the ability
of discrete Fourier analysis to identify pseudo-random behavior. This is not a
formalized result, but points in that direction.

Figure 4 is important because it give us hope that suitable a, b, c can be found.
Notice the random seeming behavior over both the iteration as well as the field.
Similarly, there are large cycles in the graph. However, there are a number of
singular points that cannot easily be visualised given the scale of the graph. In
common with our theme so far, the Fourier analysis is not sufficient in identifying
pseudo-random behavior with low enough discrepancy.

Figure 5 corresponds to a close up to one of the large cycles in figure 4. This
figure should also make more clear what exactly is going on in the functional
graphs for all of the examples hitherto mentioned.
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Figure 4: f(x) = x7 + 144x151, p = 1009, Itervalue: 82 (top left), Components:
435
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Figure 5: Closeup of Section of a Cycle in a Functional Graph
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What we notice is that this binomial seems to create rather small cycles,
though it does so quickly, for arbitrary seeds. The relatively large number of
connected components also speaks to this.

While these experimental results give us an idea of behavior, we want more
generalized information. Figure 6 corresponds to the fraction of a = 1, c, d such
that enough (a fraction > 1− 1

poly(n) ) of the seeds that ’quickly’ map to a cycle

of ’proper length’ (as defined earlier). Figure 7 is the same, except over all
a, b, c, and x choices.

What is important to note, is the seeming exponential decay. This implies
that for a given Q(n) we want p sufficiently greater than Q(n) to be able to
generate a c, d for our seed x that will allow us to generate c, d in O(υ) time.
Figure 8 corresponds to this same result but for choices of g, x. It follows that
there could be some established relationship between the two decays exhibited.
Regardless, it seems that it might be easier to find a suitable cycle on F ∗

p for
the exponential case than it is for the polynomial case. This could mean that
finding a, b, c is prohibitively expensive, but, without formal results this is not
concrete.

5.4 Unapproximability of B

The following two assumptions are necessary for proving unapproximability,
and how strong of a w(n) can be chosen determines the strength of the PRG,
as will be seen.

Assumption 1 (Predicate-to-Roots Assumption (PRA)). There exists an al-
gorithm running in time on O(w(n)) such that, if for a fraction > 1 − 1

P (n) of

all y ∈ Dp, we know Bp(y), then our algorithm outputs an x ∈ Dp satisfying
xa + cxb = y.

Assumption 2 (Trinomial Hardness Assumption (THA)). No algorithm run-
ning in time on O(w(n)) can solve for the root of fp(x) − y for a fraction
> 1

2 + 1
P (n) of the y ∈ F∗

p, for any polynomial P and n-bit prime p.

Lemma 1. Then the binomial predicate B is ΦΓ-unapproximable (for Φ =
POLY ) if all algorithms in Γ run in time on O(w(n)), and THA and PRA are
satisfied by w(n).

Proof. Assume the THA and the PRA for some fixed w(n), and let X be the
family of circuits assumed to exist by the PRA. Suppose, by contradiction, B
is not ΦΓ-unapproximable. That is, there exists infinite set T ⊂ N such that
for every n ∈ T , there exists a circuit Cn (with number of gates on O(F ))
correctly computing Bp(x) for a fraction ≥ 1

2 + 1
ϕ(n) of all (p, x) ∈ In, for some

ϕ ∈ Φ. By a counting argument [Blum-Micali], for all n ∈ T , a fraction > 1
ϕ(n)

of all n-bit primes p have this property: that Cn[p, x] = Bp(x) for a fraction
> 1

2 + 1
2ϕ(n) of all x ∈ F∗

p. Then there exists an algorithm Y , making calls
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Figure 6: Fraction of c, d, x(Y Axis) for f(x) = x+ cxd mod p on Fp, p = 1009,
with valid Pre-Cycle plus Cycle Lengths (Top Graph X Axis)(Top), and only
Cycle Satisfying Certain Length(Bottom Graph X Axis)(Bottom)
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Figure 7: Fraction of a, c, d, x(Y Axis) for f(x) = xa + cxd mod p on Fp with
p = 71 with Pre-Cycle plus Cycle Satisfying Certain Length (X Axis)(Top), and
only Cycle Satisfying Certain Length(X Axis)(Bottom)
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Figure 8: Fraction of g, x(Y Axis) for f(x) = gx mod p where g ensures
a permutation on Fp with p = 167 with Pre-Cycle plus Cycle Satisfying
Certain Length (X Axis)(Top), and only Cycle Satisfying Certain Length(X
Axis)(Bottom)
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to Cn and X as such: for any n-bit prime p, when given a ∈ F∗
p, Y guesses

Bp(y) = Cn[p, y]. The algorithm X, assuming this output to be in fact the
predicate Bp(y), computes the x ∈ F∗

p such that xa + cxb = y (mod p), and
thus Y guesses this x as the root of fp. Now Y can be transformed (via a
transformation on X, allowing it to make calls on Cn) into a circuit with a
number of gates on O(w(n)) +O(F ), which means on O(w(n)) (because of the
sizes of Cn and X.) Also, by construction, for all n ∈ T , Y correctly predicts the
root of xa+ cxb−y for a fraction > 1

2 +
1

2ϕ(n) of all y ∈ F∗
p. This contradicts the

THA, using this proof’s ϕ, Φ, and w(n), and thus B is ΦΓ-unapproximable.

6 Comparing Binomials and DLP PRG’s

Implicit in Blum and Miculi’s Discrete Logarithm PRG (DLP-PRG) is the use
of a specific Γ,Φ, and Υ. Their friendly function is f(x) = gx (mod p), their seed
i is a concatenation of a prime p and a generator g or F∗

p, and their predicate is
defined as such:

Bi(x) =

{
1 if x is the principal square root of x2 mod p

0 otherwise.

Blum and Micali use the set of all polynomials on n as their F , Φ, and Υ for
simplicity, this size coming from their assumption of the hardness of the DLP,
though there are known algorithms on O(22

√
log p log log p) that solve DLP, and

thus their bounds may be different. The Binomial PRG has a smaller Γ and Υ,
meaning (if it works) it is easier to generate and easier to break.

7 Observations about PRG’s

[Theorem 2] If f is a friendly function for a ΦΓΥ-PRG, then there does not exist
a predicate such that f−1, defined with the same set of inputs as f , generates
a ΦΓΥ-PRG (for the same Γ,Φ, and Υ).

Proof. When we speak of a ΦΓΥ-PRG, we mean one specifically generated in
the way outlined in Theorem 1. Let f be a friendly function forming a ΦΓΥ-
PRG with predicate B(1) and corresponding h(1)(x) = B(1)(f(x)). Let the set
of inputs of f = {fi|i ∈ Sn} be I = {(i, x)|x ∈ Di, i ∈ Sn, n ∈ N}. Let the
set of inputs for f−1 = {f−1

i |i ∈ Sn} also be I, where f−1
i : Di → Di is

defined on each i, and for every x, y ∈ Di, by fi(x) = y ⇐⇒ f−1
i (y) = x.

Assume, by contradiction, that there exists a predicate B(2) allowed f−1 to
also form a ΦΓΥ-PRG, with a h(2)(y) = B(2)(f−1(y)). Note that B(1) is ΦΓ-
unapproximable, and, as noted earlier, Υ ⊊ F (the F determining Γ). Notice
that f , f−1, h(1), and h(2) are all on O(Υ). Let some i and y ∈ Di be given.
We can choose x ∈ Di such that fi(x) = y and f−1

i (y) = x. Since f−1
i runs in

at worst time on O(Υ), the time it takes to find such an x is on O(Υ). Then

h
(1)
i (x) = h

(1)
i (f−1

i (y)) = B
(1)
i (fi(f

−1
i (y))) = B

(1)
i (y), because by Theorem
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1 assumptions f is injective, and this operation we said can be done on at
worst time on O(Υ). Since Υ is closed under addition, putting the previous two
steps together, we see that deterministically (that is, with 100-percent accuracy)

finding B
(1)
i (y) from any y ∈ Di is doable in time on O(Υ) (of length n of i)

for any i ∈ Sn. Thus there exists function n O(Υ) solving for the predicate,
meaning Γ cannot be contained in Υ, thus Γ ⊊ Υ, a contradiction.

8 Future Directions

Do Gowers Norms or Higher Order Fourier Analysis give more promising
results to identify pseudo-random sequence behavior?

Can one formalize the experimental results to allow their use in formal proof?
Further, running the above method* (page 7) on each n-bit prime p for varying
n, we could find how expensive finding Dp is.

Does there exist a suitable predicate B that deeply relates the roots of tri-
nomials to the distribution over Dp such that the PRA and THA can be used
to prove unapproximability? One avenue we would like to look into is the rela-
tionship between discrepancy and the number of roots of a trinomial.

Idea: A given function f has a matching predicate B to form a PRG if f−1

cannot be computed on the order of the time it takes to evalute f .
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