
Pseudo-Random Generators

Casmali Lopez and Paisios Woodcock

Simulating Randomness with Binomials

July 17, 2022

Summer 2022 REU PRG’s 1 / 42

PRG’s

We a random number.

That’s hard. Instead, we use Pseudo-random numbers:
deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:
Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

PRG’s

We a random number.

That’s hard.

Instead, we use Pseudo-random numbers:
deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:
Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

PRG’s

We a random number.

That’s hard. Instead, we use Pseudo-random numbers:

deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:
Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

PRG’s

We a random number.

That’s hard. Instead, we use Pseudo-random numbers:
deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:
Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

PRG’s

We a random number.

That’s hard. Instead, we use Pseudo-random numbers:
deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:

Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

PRG’s

We a random number.

That’s hard. Instead, we use Pseudo-random numbers:
deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:
Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

PRG’s

We a random number.

That’s hard. Instead, we use Pseudo-random numbers:
deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:
Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

PRG’s

We a random number.

That’s hard. Instead, we use Pseudo-random numbers:
deterministically generated (thus doable with code) and hard to
predict (thus secure).

A Pseudo-Randon Generator does this:
Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

I.e. given binary ’string’ length n (seed), PRG’s create length
Q(n) > n (expanded) pseudo-random binary sequences

Summer 2022 REU PRG’s 2 / 42

Unpredictability

A PRG G(x0) , on input seed x0, outputs (y1, · · · , yQ(n)) such that:

Given x0, we can easily compute (y1, · · · , yQ(n)),
but it takes an adversary a long time to compute yi+1 given
y1, · · · , yi, but not x0.
I.e. To predict with accuracy better than a half takes a long time.

Put one last way: No algorithm running within a certain time limit
can predict a next bit for a fraction much better than 1

2 of all inputs
(i.e. better than guessing).

Summer 2022 REU PRG’s 3 / 42

Unpredictability

A PRG G(x0) , on input seed x0, outputs (y1, · · · , yQ(n)) such that:
Given x0, we can easily compute (y1, · · · , yQ(n)),
but it takes an adversary a long time to compute yi+1 given
y1, · · · , yi, but not x0.

I.e. To predict with accuracy better than a half takes a long time.

Put one last way: No algorithm running within a certain time limit
can predict a next bit for a fraction much better than 1

2 of all inputs
(i.e. better than guessing).

Summer 2022 REU PRG’s 3 / 42

Unpredictability

A PRG G(x0) , on input seed x0, outputs (y1, · · · , yQ(n)) such that:
Given x0, we can easily compute (y1, · · · , yQ(n)),
but it takes an adversary a long time to compute yi+1 given
y1, · · · , yi, but not x0.
I.e. To predict with accuracy better than a half takes a long time.

Put one last way: No algorithm running within a certain time limit
can predict a next bit for a fraction much better than 1

2 of all inputs
(i.e. better than guessing).

Summer 2022 REU PRG’s 3 / 42

Unpredictability

A PRG G(x0) , on input seed x0, outputs (y1, · · · , yQ(n)) such that:
Given x0, we can easily compute (y1, · · · , yQ(n)),
but it takes an adversary a long time to compute yi+1 given
y1, · · · , yi, but not x0.
I.e. To predict with accuracy better than a half takes a long time.

Put one last way:

No algorithm running within a certain time limit
can predict a next bit for a fraction much better than 1

2 of all inputs
(i.e. better than guessing).

Summer 2022 REU PRG’s 3 / 42

Unpredictability

A PRG G(x0) , on input seed x0, outputs (y1, · · · , yQ(n)) such that:
Given x0, we can easily compute (y1, · · · , yQ(n)),
but it takes an adversary a long time to compute yi+1 given
y1, · · · , yi, but not x0.
I.e. To predict with accuracy better than a half takes a long time.

Put one last way: No algorithm running within a certain time limit
can predict a next bit for a fraction much better than 1

2 of all inputs
(i.e. better than guessing).

Summer 2022 REU PRG’s 3 / 42

Details

A function f(n) ∈ nω(1) iff f(n) is asympototically bigger than any
polynomial in n.

I.e. For any polynomial p(n),
∃ n0 such that n > n0 =⇒ f(n) > p(n).

A ΓΥ-PRG is a family of functions G = {Gn},
where Gn : {0, 1}n → {0, 1}Q(n) and Q(n) > n,
s.t. for any algorithm A ∈ Γ and any i ∈ {1, · · · , Q(n)− 1},
|Probx0∈{0,1}n(A[y1, · · · , yi] = yi+1)− 1

2 | ∈
1

nω(1) ,
and G computes in time on O(Υ) (in n).

Summer 2022 REU PRG’s 4 / 42

Details

A function f(n) ∈ nω(1) iff f(n) is asympototically bigger than any
polynomial in n.
I.e. For any polynomial p(n),
∃ n0 such that n > n0 =⇒ f(n) > p(n).

A ΓΥ-PRG is a family of functions G = {Gn},
where Gn : {0, 1}n → {0, 1}Q(n) and Q(n) > n,
s.t. for any algorithm A ∈ Γ and any i ∈ {1, · · · , Q(n)− 1},
|Probx0∈{0,1}n(A[y1, · · · , yi] = yi+1)− 1

2 | ∈
1

nω(1) ,
and G computes in time on O(Υ) (in n).

Summer 2022 REU PRG’s 4 / 42

Details

A function f(n) ∈ nω(1) iff f(n) is asympototically bigger than any
polynomial in n.
I.e. For any polynomial p(n),
∃ n0 such that n > n0 =⇒ f(n) > p(n).

A ΓΥ-PRG is a family of functions G = {Gn},

where Gn : {0, 1}n → {0, 1}Q(n) and Q(n) > n,
s.t. for any algorithm A ∈ Γ and any i ∈ {1, · · · , Q(n)− 1},
|Probx0∈{0,1}n(A[y1, · · · , yi] = yi+1)− 1

2 | ∈
1

nω(1) ,
and G computes in time on O(Υ) (in n).

Summer 2022 REU PRG’s 4 / 42

Details

A function f(n) ∈ nω(1) iff f(n) is asympototically bigger than any
polynomial in n.
I.e. For any polynomial p(n),
∃ n0 such that n > n0 =⇒ f(n) > p(n).

A ΓΥ-PRG is a family of functions G = {Gn},
where Gn : {0, 1}n → {0, 1}Q(n) and Q(n) > n,

s.t. for any algorithm A ∈ Γ and any i ∈ {1, · · · , Q(n)− 1},
|Probx0∈{0,1}n(A[y1, · · · , yi] = yi+1)− 1

2 | ∈
1

nω(1) ,
and G computes in time on O(Υ) (in n).

Summer 2022 REU PRG’s 4 / 42

Details

A function f(n) ∈ nω(1) iff f(n) is asympototically bigger than any
polynomial in n.
I.e. For any polynomial p(n),
∃ n0 such that n > n0 =⇒ f(n) > p(n).

A ΓΥ-PRG is a family of functions G = {Gn},
where Gn : {0, 1}n → {0, 1}Q(n) and Q(n) > n,
s.t. for any algorithm A ∈ Γ and any i ∈ {1, · · · , Q(n)− 1},
|Probx0∈{0,1}n(A[y1, · · · , yi] = yi+1)− 1

2 | ∈
1

nω(1) ,

and G computes in time on O(Υ) (in n).

Summer 2022 REU PRG’s 4 / 42

Details

A function f(n) ∈ nω(1) iff f(n) is asympototically bigger than any
polynomial in n.
I.e. For any polynomial p(n),
∃ n0 such that n > n0 =⇒ f(n) > p(n).

A ΓΥ-PRG is a family of functions G = {Gn},
where Gn : {0, 1}n → {0, 1}Q(n) and Q(n) > n,
s.t. for any algorithm A ∈ Γ and any i ∈ {1, · · · , Q(n)− 1},
|Probx0∈{0,1}n(A[y1, · · · , yi] = yi+1)− 1

2 | ∈
1

nω(1) ,
and G computes in time on O(Υ) (in n).

Summer 2022 REU PRG’s 4 / 42

Significance

Applications include Procedural Simulations of Nature

Real Applications typically use (mathematically speaking) pretty
horrible PRG’s.

Hackers can know your method of generating... just not the seed.
Keeping the seed hidden is what matters most. Humans choose the
seed.

Symmetric Key Cryptography Applications (seed is key)

Summer 2022 REU PRG’s 5 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique:

For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n)))

, and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Blum-Micali PRG

Friendly Function f (just a function) and Predicate Function B.

Predicate: Maps numbers to a single bit,

PRG Technique: For length n seed (n-bit binary number) x,

Take f(x), f(f(x)), · · · , f (Q(n))(x).

Take B(f(x)), B(f(f(x))), · · · , B(f (Q(n))), and REVERSE order!

Gn(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Treats binary expansion of x as n-bit sequence

Summer 2022 REU PRG’s 6 / 42

Example

Blum and Micali use f(x) = gx, where g is a generator for F∗
p.

Choice
of seed includes x and g.

B(x) = 1 iff the smallest s satisfying x = gs has s ≥ p−1
2 . Else 0.

Equivalently, Bp,g(y) = 1 iff y is the principal square root of y2 (mod
p).

So G(x) = (B(gg
···g

x

), · · · , B(gg
gx

), B(gg
x
), B(gx)).

Summer 2022 REU PRG’s 7 / 42

Example

Blum and Micali use f(x) = gx, where g is a generator for F∗
p. Choice

of seed includes x and g.

B(x) = 1 iff the smallest s satisfying x = gs has s ≥ p−1
2 .

Else 0.

Equivalently, Bp,g(y) = 1 iff y is the principal square root of y2 (mod
p).

So G(x) = (B(gg
···g

x

), · · · , B(gg
gx

), B(gg
x
), B(gx)).

Summer 2022 REU PRG’s 7 / 42

Example

Blum and Micali use f(x) = gx, where g is a generator for F∗
p. Choice

of seed includes x and g.

B(x) = 1 iff the smallest s satisfying x = gs has s ≥ p−1
2 . Else 0.

Equivalently, Bp,g(y) = 1 iff y is the principal square root of y2 (mod
p).

So G(x) = (B(gg
···g

x

), · · · , B(gg
gx

), B(gg
x
), B(gx)).

Summer 2022 REU PRG’s 7 / 42

Example

Blum and Micali use f(x) = gx, where g is a generator for F∗
p. Choice

of seed includes x and g.

B(x) = 1 iff the smallest s satisfying x = gs has s ≥ p−1
2 . Else 0.

Equivalently, Bp,g(y) = 1 iff y is the principal square root of y2 (mod
p).

So G(x) = (B(gg
···g

x

), · · · , B(gg
gx

), B(gg
x
), B(gx)).

Summer 2022 REU PRG’s 7 / 42

Example

Blum and Micali use f(x) = gx, where g is a generator for F∗
p. Choice

of seed includes x and g.

B(x) = 1 iff the smallest s satisfying x = gs has s ≥ p−1
2 . Else 0.

Equivalently, Bp,g(y) = 1 iff y is the principal square root of y2 (mod
p).

So G(x) = (B(gg
···g

x

), · · · , B(gg
gx

), B(gg
x
), B(gx)).

Summer 2022 REU PRG’s 7 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0.

Otherwise, easy to predict with probability > 1
2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:

1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy

2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

Predicate

For unpredictability, want half of domain to have B(x) = 1, and other
half B(x) = 0. Otherwise, easy to predict with probability > 1

2 .

Want x → B(f(x)) easy to compute so we can generate the
sequence.

Indeed, B(f(x)) = B(gx) easy: simply ask whether x ≥ p−1
2 .

Roughly, a PRG has two requirements:
1) x → B(f(x)) (computing B(f(x)) from x) is easy
2) x → B(x) cannot be easily computed (Why?)

Just given a y ∈ F∗
p, deciding whether y is the principal square root of

y2 is very hard.

Summer 2022 REU PRG’s 8 / 42

The Why

Efficiently predicting the next bit of our sequence

is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.

Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,

and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);

Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:

x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

The Why

Efficiently predicting the next bit of our sequence
is equivalent to finding B(x) from B(f (i)(x)), · · · , B(f(x))

Suppose we can predict (i+ 1)st bits from the first i bits.
Then, given x, we can efficiently find B(f(x)), · · · , B(f (i)(x)), since
x → B(f(x)) easy,
and then we can predict B(x) (by bullet one);
Hence x → B(x) is efficiently computable!

That is:
Next bit predictable =⇒ x → B(x) easy.

So, by contrapositive:
x → B(x) hard =⇒ Our PRG Sequence is Unpredictable!

Summer 2022 REU PRG’s 9 / 42

Efficient v. Hard

By ”easy” or ”hard”, we mean:

Is it computable in time on the Order
of a certain function?

f(n) ∈ O(g(n)) iff ∃c ∈ R, n0 ∈ N s.t.

n > n0 =⇒ f(n) ≤ cg(n)

I.e. f ∈ O(g) if f is eventually bounded above by some multiple of g.

Note: Γ is the set of algorithms computable on O(Fi) for some
function Fi in a family of functions F .

Summer 2022 REU PRG’s 10 / 42

Efficient v. Hard

By ”easy” or ”hard”, we mean: Is it computable in time on the Order
of a certain function?

f(n) ∈ O(g(n)) iff ∃c ∈ R, n0 ∈ N s.t.

n > n0 =⇒ f(n) ≤ cg(n)

I.e. f ∈ O(g) if f is eventually bounded above by some multiple of g.

Note: Γ is the set of algorithms computable on O(Fi) for some
function Fi in a family of functions F .

Summer 2022 REU PRG’s 10 / 42

Efficient v. Hard

By ”easy” or ”hard”, we mean: Is it computable in time on the Order
of a certain function?

f(n) ∈ O(g(n)) iff ∃c ∈ R, n0 ∈ N s.t.

n > n0 =⇒ f(n) ≤ cg(n)

I.e. f ∈ O(g) if f is eventually bounded above by some multiple of g.

Note: Γ is the set of algorithms computable on O(Fi) for some
function Fi in a family of functions F .

Summer 2022 REU PRG’s 10 / 42

Efficient v. Hard

By ”easy” or ”hard”, we mean: Is it computable in time on the Order
of a certain function?

f(n) ∈ O(g(n)) iff ∃c ∈ R, n0 ∈ N s.t.

n > n0 =⇒ f(n) ≤ cg(n)

I.e. f ∈ O(g) if f is eventually bounded above by some multiple of g.

Note: Γ is the set of algorithms computable on O(Fi) for some
function Fi in a family of functions F .

Summer 2022 REU PRG’s 10 / 42

Efficient v. Hard

By ”easy” or ”hard”, we mean: Is it computable in time on the Order
of a certain function?

f(n) ∈ O(g(n)) iff ∃c ∈ R, n0 ∈ N s.t.

n > n0 =⇒ f(n) ≤ cg(n)

I.e. f ∈ O(g) if f is eventually bounded above by some multiple of g.

Note: Γ is the set of algorithms computable on O(Fi) for some
function Fi in a family of functions F .

Summer 2022 REU PRG’s 10 / 42

Efficient v. Hard

By ”easy” or ”hard”, we mean: Is it computable in time on the Order
of a certain function?

f(n) ∈ O(g(n)) iff ∃c ∈ R, n0 ∈ N s.t.

n > n0 =⇒ f(n) ≤ cg(n)

I.e. f ∈ O(g) if f is eventually bounded above by some multiple of g.

Note: Γ is the set of algorithms computable on O(Fi) for some
function Fi in a family of functions F .

Summer 2022 REU PRG’s 10 / 42

Binomials

Let f(x) = xa + cxb

∈ F∗
p[x],

Can we use this as a friendly function?

That is: does there exist predicate B such that:

x → B(xa + cxb) is easy, but
x → B(x) is hard?

If we can find a predicate meeting certain conditions (to be seen),
then yes: this f can make a PRG.

Summer 2022 REU PRG’s 11 / 42

Binomials

Let f(x) = xa + cxb∈ F∗
p[x],

Can we use this as a friendly function?

That is: does there exist predicate B such that:

x → B(xa + cxb) is easy, but
x → B(x) is hard?

If we can find a predicate meeting certain conditions (to be seen),
then yes: this f can make a PRG.

Summer 2022 REU PRG’s 11 / 42

Binomials

Let f(x) = xa + cxb∈ F∗
p[x],

Can we use this as a friendly function?

That is: does there exist predicate B such that:

x → B(xa + cxb) is easy, but
x → B(x) is hard?

If we can find a predicate meeting certain conditions (to be seen),
then yes: this f can make a PRG.

Summer 2022 REU PRG’s 11 / 42

Binomials

Let f(x) = xa + cxb∈ F∗
p[x],

Can we use this as a friendly function?

That is: does there exist predicate B such that:

x → B(xa + cxb) is easy, but

x → B(x) is hard?

If we can find a predicate meeting certain conditions (to be seen),
then yes: this f can make a PRG.

Summer 2022 REU PRG’s 11 / 42

Binomials

Let f(x) = xa + cxb∈ F∗
p[x],

Can we use this as a friendly function?

That is: does there exist predicate B such that:

x → B(xa + cxb) is easy, but
x → B(x) is hard?

If we can find a predicate meeting certain conditions (to be seen),

then yes: this f can make a PRG.

Summer 2022 REU PRG’s 11 / 42

Binomials

Let f(x) = xa + cxb∈ F∗
p[x],

Can we use this as a friendly function?

That is: does there exist predicate B such that:

x → B(xa + cxb) is easy, but
x → B(x) is hard?

If we can find a predicate meeting certain conditions (to be seen),
then yes: this f can make a PRG.

Summer 2022 REU PRG’s 11 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.
Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.
Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.
Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.
Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.
Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.

Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.
Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Trinomial Hardness

Now suppose we’re given y ∈ F∗
p.

How hard is it to find x s.t. xa + cxb = y (mod p)? F∗
p.

Or: How long does it take to solve xa + cxb − y over F∗
p?

Goal: We want to use Hardness of Solving Trinomials to make this
binomial a friendly function for a PRG.

Method: For f = xa + cxb, find B such that:

If x → B(x) easy, then finding x from f(x) is easy.
Hence if solving Trinomials is Hard, (by contrapositive)
the PRG condition “x → B(x) is hard” is satisfied.

Conditional Result.

Summer 2022 REU PRG’s 12 / 42

Goal

By easy, we mean doable for a certain fraction better than half of all
inputs.

We want a predicate B such that
knowing y → B(y) for a fraction > 1

2 + 1
P (n) of y inputs

(where P is some polynomial),
would allow us to efficiently predict the root of xa + cxb − y
for a fraction > 1

2 + 1
P (n) of y inputs. (Where p is n-bit)

Summer 2022 REU PRG’s 13 / 42

Goal

By easy, we mean doable for a certain fraction better than half of all
inputs.

We want a predicate B such that

knowing y → B(y) for a fraction > 1
2 + 1

P (n) of y inputs

(where P is some polynomial),
would allow us to efficiently predict the root of xa + cxb − y
for a fraction > 1

2 + 1
P (n) of y inputs. (Where p is n-bit)

Summer 2022 REU PRG’s 13 / 42

Goal

By easy, we mean doable for a certain fraction better than half of all
inputs.

We want a predicate B such that
knowing y → B(y) for a fraction > 1

2 + 1
P (n) of y inputs

(where P is some polynomial),
would allow us to efficiently predict the root of xa + cxb − y
for a fraction > 1

2 + 1
P (n) of y inputs. (Where p is n-bit)

Summer 2022 REU PRG’s 13 / 42

Goal

By easy, we mean doable for a certain fraction better than half of all
inputs.

We want a predicate B such that
knowing y → B(y) for a fraction > 1

2 + 1
P (n) of y inputs

(where P is some polynomial),

would allow us to efficiently predict the root of xa + cxb − y
for a fraction > 1

2 + 1
P (n) of y inputs. (Where p is n-bit)

Summer 2022 REU PRG’s 13 / 42

Goal

By easy, we mean doable for a certain fraction better than half of all
inputs.

We want a predicate B such that
knowing y → B(y) for a fraction > 1

2 + 1
P (n) of y inputs

(where P is some polynomial),
would allow us to efficiently predict the root of xa + cxb − y

for a fraction > 1
2 + 1

P (n) of y inputs. (Where p is n-bit)

Summer 2022 REU PRG’s 13 / 42

Goal

By easy, we mean doable for a certain fraction better than half of all
inputs.

We want a predicate B such that
knowing y → B(y) for a fraction > 1

2 + 1
P (n) of y inputs

(where P is some polynomial),
would allow us to efficiently predict the root of xa + cxb − y
for a fraction > 1

2 + 1
P (n) of y inputs.

(Where p is n-bit)

Summer 2022 REU PRG’s 13 / 42

Goal

By easy, we mean doable for a certain fraction better than half of all
inputs.

We want a predicate B such that
knowing y → B(y) for a fraction > 1

2 + 1
P (n) of y inputs

(where P is some polynomial),
would allow us to efficiently predict the root of xa + cxb − y
for a fraction > 1

2 + 1
P (n) of y inputs. (Where p is n-bit)

Summer 2022 REU PRG’s 13 / 42

Note

What is the fastest known algorithm for solving this trinomial for a
root over F∗

p

√
p-time. That is, 2

n
2 -time.

Summer 2022 REU PRG’s 14 / 42

Inputs (Technicalities)

Dp ⊆ F∗
p is the set of inputs to our friendly function fp and predicate

Bp (dependent on the prime p).

Size-n inputs to Predicate and Friendly Function:

In = {(p, x)|p is n-bit prime x ∈ Dp}
Friendly function and predicate are sets of functions, dependent on
input length n.

Summer 2022 REU PRG’s 15 / 42

Inputs (Technicalities)

Dp ⊆ F∗
p is the set of inputs to our friendly function fp and predicate

Bp (dependent on the prime p).

Size-n inputs to Predicate and Friendly Function:
In = {(p, x)|p is n-bit prime x ∈ Dp}

Friendly function and predicate are sets of functions, dependent on
input length n.

Summer 2022 REU PRG’s 15 / 42

Inputs (Technicalities)

Dp ⊆ F∗
p is the set of inputs to our friendly function fp and predicate

Bp (dependent on the prime p).

Size-n inputs to Predicate and Friendly Function:
In = {(p, x)|p is n-bit prime x ∈ Dp}
Friendly function and predicate are sets of functions, dependent on
input length n.

Summer 2022 REU PRG’s 15 / 42

Terms

General Approach: If G(x) = (B(f (Q(n))(x)), · · · , B(f(x))),

We need B(x) to be unpredictable when given x.

If f is sufficiently ’random’ under iteration, why not just use
G(x) = (f(x), · · · , f (Q(n))(x))?

Need binary output, so have to choose a digit from each.

And! Hacker can see our function f ! PRG’s need to be that strong.

Importance of seed in Symmetric Key Cryptography applications.
How it’s generated. Knowing seed is everything!

Summer 2022 REU PRG’s 16 / 42

Terms

General Approach: If G(x) = (B(f (Q(n))(x)), · · · , B(f(x))),
We need B(x) to be unpredictable when given x.

If f is sufficiently ’random’ under iteration, why not just use
G(x) = (f(x), · · · , f (Q(n))(x))?

Need binary output, so have to choose a digit from each.

And! Hacker can see our function f ! PRG’s need to be that strong.

Importance of seed in Symmetric Key Cryptography applications.
How it’s generated. Knowing seed is everything!

Summer 2022 REU PRG’s 16 / 42

Terms

General Approach: If G(x) = (B(f (Q(n))(x)), · · · , B(f(x))),
We need B(x) to be unpredictable when given x.

If f is sufficiently ’random’ under iteration, why not just use
G(x) = (f(x), · · · , f (Q(n))(x))?

Need binary output, so have to choose a digit from each.

And! Hacker can see our function f ! PRG’s need to be that strong.

Importance of seed in Symmetric Key Cryptography applications.
How it’s generated. Knowing seed is everything!

Summer 2022 REU PRG’s 16 / 42

Terms

General Approach: If G(x) = (B(f (Q(n))(x)), · · · , B(f(x))),
We need B(x) to be unpredictable when given x.

If f is sufficiently ’random’ under iteration, why not just use
G(x) = (f(x), · · · , f (Q(n))(x))?

Need binary output, so have to choose a digit from each.

And! Hacker can see our function f ! PRG’s need to be that strong.

Importance of seed in Symmetric Key Cryptography applications.
How it’s generated. Knowing seed is everything!

Summer 2022 REU PRG’s 16 / 42

Terms

General Approach: If G(x) = (B(f (Q(n))(x)), · · · , B(f(x))),
We need B(x) to be unpredictable when given x.

If f is sufficiently ’random’ under iteration, why not just use
G(x) = (f(x), · · · , f (Q(n))(x))?

Need binary output, so have to choose a digit from each.

And! Hacker can see our function f ! PRG’s need to be that strong.

Importance of seed in Symmetric Key Cryptography applications.
How it’s generated. Knowing seed is everything!

Summer 2022 REU PRG’s 16 / 42

Accessibility

Def A predicate B is υ-accessible if there is a probabilistic algorithm with
expected run time υ(n) such that, on input an n-bit integer, the
algorithm outputs some (p, x) ∈ In with uniform probability among
elements of In;

or, when it doesn’t, it outputs nothing, but only with probability 1
2c

for some constant c.

So: A predicate is υ-Accessible if its n-bit inputs can be randomly,
uniformly sampled from n-bit integers in time υ(n); but it allows
possibility that there is a small chance your sampling algorithm
doesn’t work.

Typically defined other way:
υ is however long it takes to sample inputs uniformly.

Summer 2022 REU PRG’s 17 / 42

Accessibility

Def A predicate B is υ-accessible if there is a probabilistic algorithm with
expected run time υ(n) such that, on input an n-bit integer, the
algorithm outputs some (p, x) ∈ In with uniform probability among
elements of In;
or, when it doesn’t, it outputs nothing, but only with probability 1

2c

for some constant c.

So: A predicate is υ-Accessible if its n-bit inputs can be randomly,
uniformly sampled from n-bit integers in time υ(n); but it allows
possibility that there is a small chance your sampling algorithm
doesn’t work.

Typically defined other way:
υ is however long it takes to sample inputs uniformly.

Summer 2022 REU PRG’s 17 / 42

Accessibility

Def A predicate B is υ-accessible if there is a probabilistic algorithm with
expected run time υ(n) such that, on input an n-bit integer, the
algorithm outputs some (p, x) ∈ In with uniform probability among
elements of In;
or, when it doesn’t, it outputs nothing, but only with probability 1

2c

for some constant c.

So: A predicate is υ-Accessible if its n-bit inputs can be randomly,
uniformly sampled from n-bit integers in time υ(n); but it allows
possibility that there is a small chance your sampling algorithm
doesn’t work.

Typically defined other way:
υ is however long it takes to sample inputs uniformly.

Summer 2022 REU PRG’s 17 / 42

Accessability

Why accessability?

Our PRG takes any n-bit input, but since fp (our
friendly function) has to be a permutation on the input (in order to
make a PRG), we must restrict the input to some Dp.

So, given random n-bit integer, we need to quickly get a ’random’
n-bit input to our friendly function in order to calculate the PRG.

Summer 2022 REU PRG’s 18 / 42

Accessability

Why accessability? Our PRG takes any n-bit input, but since fp (our
friendly function) has to be a permutation on the input (in order to
make a PRG), we must restrict the input to some Dp.

So, given random n-bit integer, we need to quickly get a ’random’
n-bit input to our friendly function in order to calculate the PRG.

Summer 2022 REU PRG’s 18 / 42

Accessability

Why accessability? Our PRG takes any n-bit input, but since fp (our
friendly function) has to be a permutation on the input (in order to
make a PRG), we must restrict the input to some Dp.

So, given random n-bit integer, we need to quickly get a ’random’
n-bit input to our friendly function in order to calculate the PRG.

Summer 2022 REU PRG’s 18 / 42

Unapproximability

Def A predicate B is Γ-unapproximable if no algorithm in Γ can correctly
compute B(x) from x for more than a fraction 1

2 + 1
P (n) of all n-bit

inputs (p, x), for any polynomial P .

Basically, output of predicate is ”unpredictable” (accuracy better than
guessing requires enormous computation)

Summer 2022 REU PRG’s 19 / 42

Unapproximability

Def A predicate B is Γ-unapproximable if no algorithm in Γ can correctly
compute B(x) from x for more than a fraction 1

2 + 1
P (n) of all n-bit

inputs (p, x), for any polynomial P .

Basically, output of predicate is ”unpredictable” (accuracy better than
guessing requires enormous computation)

Summer 2022 REU PRG’s 19 / 42

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

fp ≡ f(p, ·) : Dp → Dp be a permutation for all n-bit primes

f : (p, x) → Dp calculates in time on the order of some function from
a family of functions Υ (”efficiently computable”)

h : (p, x) ∈ I → Bp(fp(x)) also in Υ (“x → Bp(f(x)) easy”)

B is υ-accessible, where υ ∈ O(Υ)

B is Γ-unapproximable. (“x → Bp(x) hard”)

Γ ⊇ Υ (otherwise it may be more easily broken than computed.)

Summer 2022 REU PRG’s 20 / 42

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

fp ≡ f(p, ·) : Dp → Dp be a permutation for all n-bit primes

f : (p, x) → Dp calculates in time on the order of some function from
a family of functions Υ (”efficiently computable”)

h : (p, x) ∈ I → Bp(fp(x)) also in Υ (“x → Bp(f(x)) easy”)

B is υ-accessible, where υ ∈ O(Υ)

B is Γ-unapproximable. (“x → Bp(x) hard”)

Γ ⊇ Υ (otherwise it may be more easily broken than computed.)

Summer 2022 REU PRG’s 20 / 42

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

fp ≡ f(p, ·) : Dp → Dp be a permutation for all n-bit primes

f : (p, x) → Dp calculates in time on the order of some function from
a family of functions Υ (”efficiently computable”)

h : (p, x) ∈ I → Bp(fp(x)) also in Υ (“x → Bp(f(x)) easy”)

B is υ-accessible, where υ ∈ O(Υ)

B is Γ-unapproximable. (“x → Bp(x) hard”)

Γ ⊇ Υ (otherwise it may be more easily broken than computed.)

Summer 2022 REU PRG’s 20 / 42

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

fp ≡ f(p, ·) : Dp → Dp be a permutation for all n-bit primes

f : (p, x) → Dp calculates in time on the order of some function from
a family of functions Υ (”efficiently computable”)

h : (p, x) ∈ I → Bp(fp(x)) also in Υ (“x → Bp(f(x)) easy”)

B is υ-accessible, where υ ∈ O(Υ)

B is Γ-unapproximable. (“x → Bp(x) hard”)

Γ ⊇ Υ (otherwise it may be more easily broken than computed.)

Summer 2022 REU PRG’s 20 / 42

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

fp ≡ f(p, ·) : Dp → Dp be a permutation for all n-bit primes

f : (p, x) → Dp calculates in time on the order of some function from
a family of functions Υ (”efficiently computable”)

h : (p, x) ∈ I → Bp(fp(x)) also in Υ (“x → Bp(f(x)) easy”)

B is υ-accessible, where υ ∈ O(Υ)

B is Γ-unapproximable. (“x → Bp(x) hard”)

Γ ⊇ Υ (otherwise it may be more easily broken than computed.)

Summer 2022 REU PRG’s 20 / 42

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

fp ≡ f(p, ·) : Dp → Dp be a permutation for all n-bit primes

f : (p, x) → Dp calculates in time on the order of some function from
a family of functions Υ (”efficiently computable”)

h : (p, x) ∈ I → Bp(fp(x)) also in Υ (“x → Bp(f(x)) easy”)

B is υ-accessible, where υ ∈ O(Υ)

B is Γ-unapproximable. (“x → Bp(x) hard”)

Γ ⊇ Υ (otherwise it may be more easily broken than computed.)

Summer 2022 REU PRG’s 20 / 42

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

fp ≡ f(p, ·) : Dp → Dp be a permutation for all n-bit primes

f : (p, x) → Dp calculates in time on the order of some function from
a family of functions Υ (”efficiently computable”)

h : (p, x) ∈ I → Bp(fp(x)) also in Υ (“x → Bp(f(x)) easy”)

B is υ-accessible, where υ ∈ O(Υ)

B is Γ-unapproximable. (“x → Bp(x) hard”)

Γ ⊇ Υ (otherwise it may be more easily broken than computed.)

Summer 2022 REU PRG’s 20 / 42

Words

In words: if you want a PRG made this way...

fp depends on p, so to efficiently compute, need to find fp quick and
calculate B(fp(x)) quick.

Need fp to be a permutation on Dp.

Need Dp (input to fp) efficiently randomly sample-able

The time it takes to compute fp(x) and Bp(fp(x)) are both on the
order of the time it takes to ’access’ Dp.

Summer 2022 REU PRG’s 21 / 42

Words

In words: if you want a PRG made this way...

fp depends on p, so to efficiently compute, need to find fp quick and
calculate B(fp(x)) quick.

Need fp to be a permutation on Dp.

Need Dp (input to fp) efficiently randomly sample-able

The time it takes to compute fp(x) and Bp(fp(x)) are both on the
order of the time it takes to ’access’ Dp.

Summer 2022 REU PRG’s 21 / 42

Words

In words: if you want a PRG made this way...

fp depends on p, so to efficiently compute, need to find fp quick and
calculate B(fp(x)) quick.

Need fp to be a permutation on Dp.

Need Dp (input to fp) efficiently randomly sample-able

The time it takes to compute fp(x) and Bp(fp(x)) are both on the
order of the time it takes to ’access’ Dp.

Summer 2022 REU PRG’s 21 / 42

Words

In words: if you want a PRG made this way...

fp depends on p, so to efficiently compute, need to find fp quick and
calculate B(fp(x)) quick.

Need fp to be a permutation on Dp.

Need Dp (input to fp) efficiently randomly sample-able

The time it takes to compute fp(x) and Bp(fp(x)) are both on the
order of the time it takes to ’access’ Dp.

Summer 2022 REU PRG’s 21 / 42

Proof of Sufficient Conditions

G(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Need to prove G can be generated in time on O(Υ) and resists
next-bit prediction by algorithms on O(Γ).

Brief Proof Outline:

Generating G(x) requires Q(n) calculations of Bp(fp(x)) and f(p, ·),
i.e. calculating f and hp ∈ Υ.
Thus generating G(x) takes time in Υ.

If there exists next-bit prediction algorithm in Γ, then use this
algorithm to predict B(f (i+1)(x)) from B(f (i)(x)): i.e. predict B(x)
from x. This contradicts unapproximability (unpredictable output)!

Summer 2022 REU PRG’s 22 / 42

Proof of Sufficient Conditions

G(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Need to prove G can be generated in time on O(Υ) and resists
next-bit prediction by algorithms on O(Γ).

Brief Proof Outline:

Generating G(x) requires Q(n) calculations of Bp(fp(x)) and f(p, ·),
i.e. calculating f and hp ∈ Υ.
Thus generating G(x) takes time in Υ.

If there exists next-bit prediction algorithm in Γ, then use this
algorithm to predict B(f (i+1)(x)) from B(f (i)(x)): i.e. predict B(x)
from x. This contradicts unapproximability (unpredictable output)!

Summer 2022 REU PRG’s 22 / 42

Proof of Sufficient Conditions

G(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Need to prove G can be generated in time on O(Υ) and resists
next-bit prediction by algorithms on O(Γ).

Brief Proof Outline:

Generating G(x) requires Q(n) calculations of Bp(fp(x)) and f(p, ·),
i.e. calculating f and hp ∈ Υ.
Thus generating G(x) takes time in Υ.

If there exists next-bit prediction algorithm in Γ, then use this
algorithm to predict B(f (i+1)(x)) from B(f (i)(x)): i.e. predict B(x)
from x. This contradicts unapproximability (unpredictable output)!

Summer 2022 REU PRG’s 22 / 42

Proof of Sufficient Conditions

G(x) = (B(f (Q(n))(x)), · · · , B(f(x))) for n-bit seed x

Need to prove G can be generated in time on O(Υ) and resists
next-bit prediction by algorithms on O(Γ).

Brief Proof Outline:

Generating G(x) requires Q(n) calculations of Bp(fp(x)) and f(p, ·),
i.e. calculating f and hp ∈ Υ.
Thus generating G(x) takes time in Υ.

If there exists next-bit prediction algorithm in Γ, then use this
algorithm to predict B(f (i+1)(x)) from B(f (i)(x)): i.e. predict B(x)
from x. This contradicts unapproximability (unpredictable output)!

Summer 2022 REU PRG’s 22 / 42

Pause

What are we doing?

Reminder: we want to generate unpredictable binary strings.

This means algorithms running in certain times can’t predict with
certain accuracy.

Γ is our measure of ”certain times”, i.e. the strength of algorithms
that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ,
because Υ ⊆ Γ.
The a, b, c,Dp (with fp(x) = xa + cxb being permutation on Dp)
determine Υ

Studying what choice of Γ and Υ will work shows how good (if
possible) our PRG is.

Summer 2022 REU PRG’s 23 / 42

Pause

What are we doing?

Reminder: we want to generate unpredictable binary strings.

This means algorithms running in certain times can’t predict with
certain accuracy.

Γ is our measure of ”certain times”, i.e. the strength of algorithms
that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ,
because Υ ⊆ Γ.
The a, b, c,Dp (with fp(x) = xa + cxb being permutation on Dp)
determine Υ

Studying what choice of Γ and Υ will work shows how good (if
possible) our PRG is.

Summer 2022 REU PRG’s 23 / 42

Pause

What are we doing?

Reminder: we want to generate unpredictable binary strings.

This means algorithms running in certain times can’t predict with
certain accuracy.

Γ is our measure of ”certain times”, i.e. the strength of algorithms
that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ,
because Υ ⊆ Γ.
The a, b, c,Dp (with fp(x) = xa + cxb being permutation on Dp)
determine Υ

Studying what choice of Γ and Υ will work shows how good (if
possible) our PRG is.

Summer 2022 REU PRG’s 23 / 42

Pause

What are we doing?

Reminder: we want to generate unpredictable binary strings.

This means algorithms running in certain times can’t predict with
certain accuracy.

Γ is our measure of ”certain times”, i.e. the strength of algorithms
that cannot predict our sequence.

Υ, the time it takes to generate the PRG, sets bounds on this Γ,
because Υ ⊆ Γ.
The a, b, c,Dp (with fp(x) = xa + cxb being permutation on Dp)
determine Υ

Studying what choice of Γ and Υ will work shows how good (if
possible) our PRG is.

Summer 2022 REU PRG’s 23 / 42

Pause

What are we doing?

Reminder: we want to generate unpredictable binary strings.

This means algorithms running in certain times can’t predict with
certain accuracy.

Γ is our measure of ”certain times”, i.e. the strength of algorithms
that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ,

because Υ ⊆ Γ.
The a, b, c,Dp (with fp(x) = xa + cxb being permutation on Dp)
determine Υ

Studying what choice of Γ and Υ will work shows how good (if
possible) our PRG is.

Summer 2022 REU PRG’s 23 / 42

Pause

What are we doing?

Reminder: we want to generate unpredictable binary strings.

This means algorithms running in certain times can’t predict with
certain accuracy.

Γ is our measure of ”certain times”, i.e. the strength of algorithms
that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ,
because Υ ⊆ Γ.
The a, b, c,Dp (with fp(x) = xa + cxb being permutation on Dp)
determine Υ

Studying what choice of Γ and Υ will work shows how good (if
possible) our PRG is.

Summer 2022 REU PRG’s 23 / 42

Pause

What are we doing?

Reminder: we want to generate unpredictable binary strings.

This means algorithms running in certain times can’t predict with
certain accuracy.

Γ is our measure of ”certain times”, i.e. the strength of algorithms
that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ,
because Υ ⊆ Γ.
The a, b, c,Dp (with fp(x) = xa + cxb being permutation on Dp)
determine Υ

Studying what choice of Γ and Υ will work shows how good (if
possible) our PRG is.

Summer 2022 REU PRG’s 23 / 42

Neccessary Conditions on PRG’s

Another thing that limits our choice of Γ is what we call ∆.

Let δ(n) be the fastest time it takes to compute a root of xa + cxb in
F∗
p, where p is n-bits.

Let ∆ be all functions on O(δ(n)).

Recall the definition:

G is a ΓΥ-PRG if no algorithm in Γ can predict with accuracy
1
2 + 1

P (n) for any polynomial P, and G runs in time on O(Υ).

Summer 2022 REU PRG’s 24 / 42

Neccessary Conditions on PRG’s

Another thing that limits our choice of Γ is what we call ∆.

Let δ(n) be the fastest time it takes to compute a root of xa + cxb in
F∗
p, where p is n-bits.

Let ∆ be all functions on O(δ(n)).

Recall the definition:

G is a ΓΥ-PRG if no algorithm in Γ can predict with accuracy
1
2 + 1

P (n) for any polynomial P, and G runs in time on O(Υ).

Summer 2022 REU PRG’s 24 / 42

Neccessary Conditions on PRG’s

Another thing that limits our choice of Γ is what we call ∆.

Let δ(n) be the fastest time it takes to compute a root of xa + cxb in
F∗
p, where p is n-bits.

Let ∆ be all functions on O(δ(n)).

Recall the definition:

G is a ΓΥ-PRG if no algorithm in Γ can predict with accuracy
1
2 + 1

P (n) for any polynomial P, and G runs in time on O(Υ).

Summer 2022 REU PRG’s 24 / 42

Neccessary Conditions on PRG’s

Another thing that limits our choice of Γ is what we call ∆.

Let δ(n) be the fastest time it takes to compute a root of xa + cxb in
F∗
p, where p is n-bits.

Let ∆ be all functions on O(δ(n)).

Recall the definition:

G is a ΓΥ-PRG if no algorithm in Γ can predict with accuracy
1
2 + 1

P (n) for any polynomial P, and G runs in time on O(Υ).

Summer 2022 REU PRG’s 24 / 42

Neccessary Conditions on PRG’s

Another thing that limits our choice of Γ is what we call ∆.

Let δ(n) be the fastest time it takes to compute a root of xa + cxb in
F∗
p, where p is n-bits.

Let ∆ be all functions on O(δ(n)).

Recall the definition:

G is a ΓΥ-PRG if no algorithm in Γ can predict with accuracy
1
2 + 1

P (n) for any polynomial P, and G runs in time on O(Υ).

Summer 2022 REU PRG’s 24 / 42

Neccessary Conditions on PRG’s

Another thing that limits our choice of Γ is what we call ∆.

Let δ(n) be the fastest time it takes to compute a root of xa + cxb in
F∗
p, where p is n-bits.

Let ∆ be all functions on O(δ(n)).

Recall the definition:

G is a ΓΥ-PRG if no algorithm in Γ can predict with accuracy
1
2 + 1

P (n) for any polynomial P, and G runs in time on O(Υ).

Summer 2022 REU PRG’s 24 / 42

Delta

Say ∆ ⊆ Γ.

Then δ ∈ O(Γ), so we cannot predict B(y) give y (better than
guessing).
But given y, find x s.t. f(x) = y, then B(f(x)) = B(y).
Doable in time O(δ(n)) +O(Υ), so on O(Υ).
Contradiction!

Thus we must have Γ ⊊ ∆.

Summer 2022 REU PRG’s 25 / 42

Delta

Say ∆ ⊆ Γ.
Then δ ∈ O(Γ), so we cannot predict B(y) give y (better than
guessing).

But given y, find x s.t. f(x) = y, then B(f(x)) = B(y).
Doable in time O(δ(n)) +O(Υ), so on O(Υ).
Contradiction!

Thus we must have Γ ⊊ ∆.

Summer 2022 REU PRG’s 25 / 42

Delta

Say ∆ ⊆ Γ.
Then δ ∈ O(Γ), so we cannot predict B(y) give y (better than
guessing).
But given y, find x s.t. f(x) = y, then B(f(x)) = B(y).

Doable in time O(δ(n)) +O(Υ), so on O(Υ).
Contradiction!

Thus we must have Γ ⊊ ∆.

Summer 2022 REU PRG’s 25 / 42

Delta

Say ∆ ⊆ Γ.
Then δ ∈ O(Γ), so we cannot predict B(y) give y (better than
guessing).
But given y, find x s.t. f(x) = y, then B(f(x)) = B(y).
Doable in time O(δ(n)) +O(Υ), so on O(Υ).

Contradiction!

Thus we must have Γ ⊊ ∆.

Summer 2022 REU PRG’s 25 / 42

Delta

Say ∆ ⊆ Γ.
Then δ ∈ O(Γ), so we cannot predict B(y) give y (better than
guessing).
But given y, find x s.t. f(x) = y, then B(f(x)) = B(y).
Doable in time O(δ(n)) +O(Υ), so on O(Υ).
Contradiction!

Thus we must have Γ ⊊ ∆.

Summer 2022 REU PRG’s 25 / 42

Current Bound

Current Bounds: Calculating fp(x) and hp(x) take time on
O(n2 log(n)).

How do we choose the a, b, c,Dp to make fp(x) = xa + cxb a
permutation on Dp? Is this easy?

Good questions. That’s where the bulk of computation time goes.

The thing which may keep this binomial from making a PRG is it
being ”too expensive” to systematically find the a, b, c,Dp such that
fp is a permutation on Dp.

Especially because |Dp| ≥ Q(n).

Can’t begin being periodic too quickly, so must have bigger range of
outputs of f(x) than elements in the outputted sequence.

Summer 2022 REU PRG’s 26 / 42

Current Bound

Current Bounds: Calculating fp(x) and hp(x) take time on
O(n2 log(n)).

How do we choose the a, b, c,Dp to make fp(x) = xa + cxb a
permutation on Dp?

Is this easy?

Good questions. That’s where the bulk of computation time goes.

The thing which may keep this binomial from making a PRG is it
being ”too expensive” to systematically find the a, b, c,Dp such that
fp is a permutation on Dp.

Especially because |Dp| ≥ Q(n).

Can’t begin being periodic too quickly, so must have bigger range of
outputs of f(x) than elements in the outputted sequence.

Summer 2022 REU PRG’s 26 / 42

Current Bound

Current Bounds: Calculating fp(x) and hp(x) take time on
O(n2 log(n)).

How do we choose the a, b, c,Dp to make fp(x) = xa + cxb a
permutation on Dp? Is this easy?

Good questions.

That’s where the bulk of computation time goes.

The thing which may keep this binomial from making a PRG is it
being ”too expensive” to systematically find the a, b, c,Dp such that
fp is a permutation on Dp.

Especially because |Dp| ≥ Q(n).

Can’t begin being periodic too quickly, so must have bigger range of
outputs of f(x) than elements in the outputted sequence.

Summer 2022 REU PRG’s 26 / 42

Current Bound

Current Bounds: Calculating fp(x) and hp(x) take time on
O(n2 log(n)).

How do we choose the a, b, c,Dp to make fp(x) = xa + cxb a
permutation on Dp? Is this easy?

Good questions. That’s where the bulk of computation time goes.

The thing which may keep this binomial from making a PRG is it
being ”too expensive” to systematically find the a, b, c,Dp such that
fp is a permutation on Dp.

Especially because |Dp| ≥ Q(n).

Can’t begin being periodic too quickly, so must have bigger range of
outputs of f(x) than elements in the outputted sequence.

Summer 2022 REU PRG’s 26 / 42

Current Bound

Current Bounds: Calculating fp(x) and hp(x) take time on
O(n2 log(n)).

How do we choose the a, b, c,Dp to make fp(x) = xa + cxb a
permutation on Dp? Is this easy?

Good questions. That’s where the bulk of computation time goes.

The thing which may keep this binomial from making a PRG is it
being ”too expensive” to systematically find the a, b, c,Dp such that
fp is a permutation on Dp.

Especially because |Dp| ≥ Q(n).

Can’t begin being periodic too quickly, so must have bigger range of
outputs of f(x) than elements in the outputted sequence.

Summer 2022 REU PRG’s 26 / 42

Current Bound

Current Bounds: Calculating fp(x) and hp(x) take time on
O(n2 log(n)).

How do we choose the a, b, c,Dp to make fp(x) = xa + cxb a
permutation on Dp? Is this easy?

Good questions. That’s where the bulk of computation time goes.

The thing which may keep this binomial from making a PRG is it
being ”too expensive” to systematically find the a, b, c,Dp such that
fp is a permutation on Dp.

Especially because |Dp| ≥ Q(n).

Can’t begin being periodic too quickly, so must have bigger range of
outputs of f(x) than elements in the outputted sequence.

Summer 2022 REU PRG’s 26 / 42

Current Bound

Current Bounds: Calculating fp(x) and hp(x) take time on
O(n2 log(n)).

How do we choose the a, b, c,Dp to make fp(x) = xa + cxb a
permutation on Dp? Is this easy?

Good questions. That’s where the bulk of computation time goes.

The thing which may keep this binomial from making a PRG is it
being ”too expensive” to systematically find the a, b, c,Dp such that
fp is a permutation on Dp.

Especially because |Dp| ≥ Q(n).

Can’t begin being periodic too quickly, so must have bigger range of
outputs of f(x) than elements in the outputted sequence.

Summer 2022 REU PRG’s 26 / 42

Too Expensive?

We need Υ ⊆ Γ ⊊ ∆.

If calculating fp and finding Dp take too long, Γ skyrockets,
then we would need to show: No algorithm on this huge Γ runtime
can predict with good accuracy.

As Γ increases, this becomes a stronger and stronger statement.

At very least, need fp and Dp computable in time on smaller order
than δ (generate faster than break).

A lower bound on Υ is n2 log(n) (time to calculate each fp(x) when
a, b, c,Dp are known).

Summer 2022 REU PRG’s 27 / 42

Too Expensive?

We need Υ ⊆ Γ ⊊ ∆.

If calculating fp and finding Dp take too long, Γ skyrockets,

then we would need to show: No algorithm on this huge Γ runtime
can predict with good accuracy.

As Γ increases, this becomes a stronger and stronger statement.

At very least, need fp and Dp computable in time on smaller order
than δ (generate faster than break).

A lower bound on Υ is n2 log(n) (time to calculate each fp(x) when
a, b, c,Dp are known).

Summer 2022 REU PRG’s 27 / 42

Too Expensive?

We need Υ ⊆ Γ ⊊ ∆.

If calculating fp and finding Dp take too long, Γ skyrockets,
then we would need to show: No algorithm on this huge Γ runtime
can predict with good accuracy.

As Γ increases, this becomes a stronger and stronger statement.

At very least, need fp and Dp computable in time on smaller order
than δ (generate faster than break).

A lower bound on Υ is n2 log(n) (time to calculate each fp(x) when
a, b, c,Dp are known).

Summer 2022 REU PRG’s 27 / 42

Too Expensive?

We need Υ ⊆ Γ ⊊ ∆.

If calculating fp and finding Dp take too long, Γ skyrockets,
then we would need to show: No algorithm on this huge Γ runtime
can predict with good accuracy.

As Γ increases, this becomes a stronger and stronger statement.

At very least, need fp and Dp computable in time on smaller order
than δ (generate faster than break).

A lower bound on Υ is n2 log(n) (time to calculate each fp(x) when
a, b, c,Dp are known).

Summer 2022 REU PRG’s 27 / 42

Too Expensive?

We need Υ ⊆ Γ ⊊ ∆.

If calculating fp and finding Dp take too long, Γ skyrockets,
then we would need to show: No algorithm on this huge Γ runtime
can predict with good accuracy.

As Γ increases, this becomes a stronger and stronger statement.

At very least, need fp and Dp computable in time on smaller order
than δ (generate faster than break).

A lower bound on Υ is n2 log(n) (time to calculate each fp(x) when
a, b, c,Dp are known).

Summer 2022 REU PRG’s 27 / 42

Too Expensive?

We need Υ ⊆ Γ ⊊ ∆.

If calculating fp and finding Dp take too long, Γ skyrockets,
then we would need to show: No algorithm on this huge Γ runtime
can predict with good accuracy.

As Γ increases, this becomes a stronger and stronger statement.

At very least, need fp and Dp computable in time on smaller order
than δ (generate faster than break).

A lower bound on Υ is n2 log(n) (time to calculate each fp(x) when
a, b, c,Dp are known).

Summer 2022 REU PRG’s 27 / 42

Sanity Check

Reminder: We’re assessing Γ and Υ to see whether binomials can
generate PRG’s. And Dp determines Υ, which determines whether
there is a Γ to work.

Summer 2022 REU PRG’s 28 / 42

Bounds

Suppose finding a root of f(x) = xa + cxb is doable in time on
O(n2log(n))
; that is, trinomials are solvable in time on O(log2(p) log(log(p))).

Then f cannot be used to create a PRG (for any Γ, Φ, Υ, or B)!

In fact, if finding the root of a d-degree t-nomial f over F∗
p is doable

in time on O(t log2(p) log(log(p)), then f cannot be used as a
friendly function (ever).

Summer 2022 REU PRG’s 29 / 42

Bounds

Suppose finding a root of f(x) = xa + cxb is doable in time on
O(n2log(n))
; that is, trinomials are solvable in time on O(log2(p) log(log(p))).

Then f cannot be used to create a PRG (for any Γ, Φ, Υ, or B)!

In fact, if finding the root of a d-degree t-nomial f over F∗
p is doable

in time on O(t log2(p) log(log(p)), then f cannot be used as a
friendly function (ever).

Summer 2022 REU PRG’s 29 / 42

Bounds

Suppose finding a root of f(x) = xa + cxb is doable in time on
O(n2log(n))
; that is, trinomials are solvable in time on O(log2(p) log(log(p))).

Then f cannot be used to create a PRG (for any Γ, Φ, Υ, or B)!

In fact, if finding the root of a d-degree t-nomial f over F∗
p is doable

in time on O(t log2(p) log(log(p)),

then f cannot be used as a
friendly function (ever).

Summer 2022 REU PRG’s 29 / 42

Bounds

Suppose finding a root of f(x) = xa + cxb is doable in time on
O(n2log(n))
; that is, trinomials are solvable in time on O(log2(p) log(log(p))).

Then f cannot be used to create a PRG (for any Γ, Φ, Υ, or B)!

In fact, if finding the root of a d-degree t-nomial f over F∗
p is doable

in time on O(t log2(p) log(log(p)), then f cannot be used as a
friendly function (ever).

Summer 2022 REU PRG’s 29 / 42

Importance of Dp

Dp is the restriction of F∗
p such that xa + cxb is a permutation on Dp.

To decide whether this binomial can be used for PRG’s, one
prerequisite is thus:

In time on O(p log2(p) log(log(p))), we need to systematically choose
a, b, c, and Dp ⊆ F∗

p such that fp(x) = xa + cxb is a permutation on
Dp.

What algorithm works? We don’t know any.But statistically speaking,
”good” choices are hard to come by.

Dp will be a subset of F∗
p that forms a cycle under fp, so this boils

down to studying cycle lengths and frequencies of xa + cxb ∈ F∗
p[x].

Summer 2022 REU PRG’s 30 / 42

Importance of Dp

Dp is the restriction of F∗
p such that xa + cxb is a permutation on Dp.

To decide whether this binomial can be used for PRG’s, one
prerequisite is thus:

In time on O(p log2(p) log(log(p))), we need to systematically choose
a, b, c, and Dp ⊆ F∗

p such that fp(x) = xa + cxb is a permutation on
Dp.

What algorithm works? We don’t know any.But statistically speaking,
”good” choices are hard to come by.

Dp will be a subset of F∗
p that forms a cycle under fp, so this boils

down to studying cycle lengths and frequencies of xa + cxb ∈ F∗
p[x].

Summer 2022 REU PRG’s 30 / 42

Importance of Dp

Dp is the restriction of F∗
p such that xa + cxb is a permutation on Dp.

To decide whether this binomial can be used for PRG’s, one
prerequisite is thus:

In time on O(p log2(p) log(log(p))), we need to systematically choose
a, b, c, and Dp ⊆ F∗

p such that fp(x) = xa + cxb is a permutation on
Dp.

What algorithm works? We don’t know any.But statistically speaking,
”good” choices are hard to come by.

Dp will be a subset of F∗
p that forms a cycle under fp, so this boils

down to studying cycle lengths and frequencies of xa + cxb ∈ F∗
p[x].

Summer 2022 REU PRG’s 30 / 42

Importance of Dp

Dp is the restriction of F∗
p such that xa + cxb is a permutation on Dp.

To decide whether this binomial can be used for PRG’s, one
prerequisite is thus:

In time on O(p log2(p) log(log(p))), we need to systematically choose
a, b, c, and Dp ⊆ F∗

p such that fp(x) = xa + cxb is a permutation on
Dp.

What algorithm works?

We don’t know any.But statistically speaking,
”good” choices are hard to come by.

Dp will be a subset of F∗
p that forms a cycle under fp, so this boils

down to studying cycle lengths and frequencies of xa + cxb ∈ F∗
p[x].

Summer 2022 REU PRG’s 30 / 42

Importance of Dp

Dp is the restriction of F∗
p such that xa + cxb is a permutation on Dp.

To decide whether this binomial can be used for PRG’s, one
prerequisite is thus:

In time on O(p log2(p) log(log(p))), we need to systematically choose
a, b, c, and Dp ⊆ F∗

p such that fp(x) = xa + cxb is a permutation on
Dp.

What algorithm works? We don’t know any.

But statistically speaking,
”good” choices are hard to come by.

Dp will be a subset of F∗
p that forms a cycle under fp, so this boils

down to studying cycle lengths and frequencies of xa + cxb ∈ F∗
p[x].

Summer 2022 REU PRG’s 30 / 42

Importance of Dp

Dp is the restriction of F∗
p such that xa + cxb is a permutation on Dp.

To decide whether this binomial can be used for PRG’s, one
prerequisite is thus:

In time on O(p log2(p) log(log(p))), we need to systematically choose
a, b, c, and Dp ⊆ F∗

p such that fp(x) = xa + cxb is a permutation on
Dp.

What algorithm works? We don’t know any.But statistically speaking,
”good” choices are hard to come by.

Dp will be a subset of F∗
p that forms a cycle under fp, so this boils

down to studying cycle lengths and frequencies of xa + cxb ∈ F∗
p[x].

Summer 2022 REU PRG’s 30 / 42

Importance of Dp

Dp is the restriction of F∗
p such that xa + cxb is a permutation on Dp.

To decide whether this binomial can be used for PRG’s, one
prerequisite is thus:

In time on O(p log2(p) log(log(p))), we need to systematically choose
a, b, c, and Dp ⊆ F∗

p such that fp(x) = xa + cxb is a permutation on
Dp.

What algorithm works? We don’t know any.But statistically speaking,
”good” choices are hard to come by.

Dp will be a subset of F∗
p that forms a cycle under fp, so this boils

down to studying cycle lengths and frequencies of xa + cxb ∈ F∗
p[x].

Summer 2022 REU PRG’s 30 / 42

Dp constraints

By technical definitions, we only need a PRG to be unpredictable for
”almost all” input seeds

,
and to choose Dp, we need to actually iterate through fp until
reaching a repeat.

Need cycle length at least Q(n), but Cycle Length + Pre-Period
Length less than O(p), lest calculating Dp takes time on O(∆) and
the whole PRG is useless.

Study pre-period and closest-cycle lengths for elements on F∗
p

Summer 2022 REU PRG’s 31 / 42

Dp constraints

By technical definitions, we only need a PRG to be unpredictable for
”almost all” input seeds,
and to choose Dp, we need to actually iterate through fp until
reaching a repeat.

Need cycle length at least Q(n), but Cycle Length + Pre-Period
Length less than O(p), lest calculating Dp takes time on O(∆) and
the whole PRG is useless.

Study pre-period and closest-cycle lengths for elements on F∗
p

Summer 2022 REU PRG’s 31 / 42

Dp constraints

By technical definitions, we only need a PRG to be unpredictable for
”almost all” input seeds,
and to choose Dp, we need to actually iterate through fp until
reaching a repeat.

Need cycle length at least Q(n),

but Cycle Length + Pre-Period
Length less than O(p), lest calculating Dp takes time on O(∆) and
the whole PRG is useless.

Study pre-period and closest-cycle lengths for elements on F∗
p

Summer 2022 REU PRG’s 31 / 42

Dp constraints

By technical definitions, we only need a PRG to be unpredictable for
”almost all” input seeds,
and to choose Dp, we need to actually iterate through fp until
reaching a repeat.

Need cycle length at least Q(n), but Cycle Length + Pre-Period
Length less than O(p)

, lest calculating Dp takes time on O(∆) and
the whole PRG is useless.

Study pre-period and closest-cycle lengths for elements on F∗
p

Summer 2022 REU PRG’s 31 / 42

Dp constraints

By technical definitions, we only need a PRG to be unpredictable for
”almost all” input seeds,
and to choose Dp, we need to actually iterate through fp until
reaching a repeat.

Need cycle length at least Q(n), but Cycle Length + Pre-Period
Length less than O(p), lest calculating Dp takes time on O(∆) and
the whole PRG is useless.

Study pre-period and closest-cycle lengths for elements on F∗
p

Summer 2022 REU PRG’s 31 / 42

Dp constraints

By technical definitions, we only need a PRG to be unpredictable for
”almost all” input seeds,
and to choose Dp, we need to actually iterate through fp until
reaching a repeat.

Need cycle length at least Q(n), but Cycle Length + Pre-Period
Length less than O(p), lest calculating Dp takes time on O(∆) and
the whole PRG is useless.

Study pre-period and closest-cycle lengths for elements on F∗
p

Summer 2022 REU PRG’s 31 / 42

Frequency of Good a, b, c Choices

So.... What do know about these cycles in Fp?

The following slides represent some experimental results for various
f(x)

f(x) over the Field

Example of iterating f(x)

Discrete Fourier Analysis(discrepancy) of iteration

Functional Graph of f(x)

Summer 2022 REU PRG’s 32 / 42

Graphs DLP

200 400 600 800 1000

200

400

600

800

1000

200 400 600 800 1000

200

400

600

800

1000

-800 -600 -400 -200 200 400 600

-400

-200

200

400

Figure: f(x) = 11x mod 1009, p = 1009, Itervalue: 582(top left), Number of
Components: 10

Summer 2022 REU PRG’s 33 / 42

Graphs Binomial

200 400 600 800 1000

200

400

600

800

1000

200 400 600 800 1000

200

400

600

800

1000

-200 -100 100 200

-400

-200

200

400

Figure: f(x) = x+ cx(p+1)/2, p = 1009, Itervalue: 706(top left), c = 606
satisfies 1− c2 = d2 where d ∈ Fp, Number of Components: 27

Summer 2022 REU PRG’s 34 / 42

Graphs Trinomals

200 400 600 800 1000

200

400

600

800

1000

200 400 600 800 1000

200

400

600

800

1000

-100 -50 50 100 150

-150

-100

-50

50

100

150

Figure: f(x) = x7 + 606x505, p = 1009, Itervalue: 756(top left), Number of
Components: 936

Summer 2022 REU PRG’s 35 / 42

Graphs Trinomials

200 400 600 800 1000

200

400

600

800

1000

200 400 600 800 1000

200

400

600

800

1000

-200 -100 100 200

-400

-200

200

400

Figure: f(x) = x7 + 144x151, p = 1009, Itervalue: 82(top left),
gcd(7, 1008) > 2 and gcd(144, 1008) > 2, Number of Components: 435

Summer 2022 REU PRG’s 36 / 42

Cycle Close Up

Figure: Closeup of Section of a Cycle in a Functional Graph

Summer 2022 REU PRG’s 37 / 42

Exponential Decay

50 100 150 200 250

0.02

0.04

0.06

0.08

0.10

0.12

50 100 150 200 250

0.02

0.04

0.06

0.08

0.10

Figure: Fraction of c, d, x(Y Axis) for f(x) = x+ cxd mod p on Fp with
p = 257 with Pre-Cycle plus Cycle Satisfying Certain Length (X Axis)(Left), and
only Cycle Satisfying Certain Length(X Axis)(Right)

Summer 2022 REU PRG’s 38 / 42

Exponential Decay

10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70

0.05

0.10

0.15

0.20

Figure: Fraction of a, c, b, x(Y Axis) for f(x) = xa + cxb mod p on Fp with
p = 71 with Pre-Cycle plus Cycle Satisfying Certain Length (X Axis)(Left), and
only Cycle Satisfying Certain Length(X Axis)(Right)

Summer 2022 REU PRG’s 39 / 42

Side Results

[Theorem] If f is a friendly function for a ΓΥ-PRG, f−1 cannot be a
friendly function for a ΓΥ-PRG.

[Conjecture] For a suitable friendly function f to form a PRG, it suffices to
have a large complexity difference between f and f−1, where f is on
O(Υ) and f−1 is on O(Γ).

Summer 2022 REU PRG’s 40 / 42

Recap

We want pseudo-random generator.

We generate it the way Blum and Micali do.

We want to use Binomials (instead of DLP),

under the assumption that solving Trinomials is hard.

There are a couple interesting avenues we wish we had time to look
into here

This requires systematically finding a, b, c,Dp (restriction of F∗
p on

which fp is a permutation).

However... such choices of a, b, c,Dp are exceedingly rare.

Summer 2022 REU PRG’s 41 / 42

Recap

We want pseudo-random generator.

We generate it the way Blum and Micali do.

We want to use Binomials (instead of DLP),

under the assumption that solving Trinomials is hard.

There are a couple interesting avenues we wish we had time to look
into here

This requires systematically finding a, b, c,Dp (restriction of F∗
p on

which fp is a permutation).

However... such choices of a, b, c,Dp are exceedingly rare.

Summer 2022 REU PRG’s 41 / 42

Recap

We want pseudo-random generator.

We generate it the way Blum and Micali do.

We want to use Binomials (instead of DLP),

under the assumption that solving Trinomials is hard.

There are a couple interesting avenues we wish we had time to look
into here

This requires systematically finding a, b, c,Dp (restriction of F∗
p on

which fp is a permutation).

However... such choices of a, b, c,Dp are exceedingly rare.

Summer 2022 REU PRG’s 41 / 42

Recap

We want pseudo-random generator.

We generate it the way Blum and Micali do.

We want to use Binomials (instead of DLP),

under the assumption that solving Trinomials is hard.

There are a couple interesting avenues we wish we had time to look
into here

This requires systematically finding a, b, c,Dp (restriction of F∗
p on

which fp is a permutation).

However... such choices of a, b, c,Dp are exceedingly rare.

Summer 2022 REU PRG’s 41 / 42

Recap

We want pseudo-random generator.

We generate it the way Blum and Micali do.

We want to use Binomials (instead of DLP),

under the assumption that solving Trinomials is hard.

There are a couple interesting avenues we wish we had time to look
into here

This requires systematically finding a, b, c,Dp (restriction of F∗
p on

which fp is a permutation).

However...

such choices of a, b, c,Dp are exceedingly rare.

Summer 2022 REU PRG’s 41 / 42

Recap

We want pseudo-random generator.

We generate it the way Blum and Micali do.

We want to use Binomials (instead of DLP),

under the assumption that solving Trinomials is hard.

There are a couple interesting avenues we wish we had time to look
into here

This requires systematically finding a, b, c,Dp (restriction of F∗
p on

which fp is a permutation).

However... such choices of a, b, c,Dp are exceedingly rare.

Summer 2022 REU PRG’s 41 / 42

fin

Summer 2022 REU PRG’s 42 / 42

