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Dirichlet Characters

A Dirichlet character (modulo q) χ : Z → C× is a mapping with the following
properties:

χ(ab) = χ(a)χ(b).

χ(a) =

{
= 0 gcd(a, q) ̸= 1

̸= 0 gcd(a, q) = 1.

χ(a± q) = χ(a).

These properties imply that when (a, q) = 1, χ(a) is a ϕ(q)th roots of unity.
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SL2(Z) and some subgroups

Recall the following definitions:

Definition
SL2(Z) = {γ ∈M2(Z)| det(γ) = 1}

Γ0(N) = {γ ∈ SL2(Z)|γ ≡
[
∗ ∗
0 ∗

]
(mod N)

Γ1(N) = {γ ∈ SL2(Z)|γ ≡
[
1 ∗
0 1

]
(mod N)

Γ(N) = {γ ∈ SL2(Z)|γ ≡
[
1 0
0 1

]
(mod N)}

Remark

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).
Γ(N) is the kernel of the reduction map SL2(Z) −→ SL2(Z/NZ).
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Modular Forms

A modular form f of weight k is a function on H that has a symmetry with the
group action of SL2(Z) on H by linear fractional transformations. Specifically:

f(

[
a b
c d

]
z) = f(az+b

cz+b ) = (cz + d)kf(z) for

[
a b
c d

]
∈ SL2(Z).

f is holomorphic/complex analytic.

f(z) is bounded as Im(z) −→ ∞.

We can extend this concept to what are called automorphic forms by relaxing the
holomorphicity requirement and including an automorphy factor ϵ in the
symmetry:

f(

[
a b
c d

]
z) = f(

az + b

cz + b
) = ϵ(a, b, c, d)(cz + d)kf(z).
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Eisenstein Series

Eisenstein series of weight 0 attached to Dirichlet characters χ1, χ2 (modulo
q1, q2 respectively), Eχ1,χ2

(z, s).

Automorphic form on the congruence subgroup Γ0(q1q2) with central
character ψ = χ1χ2. This means Eχ1,χ2

(γz, s) = ψ(γ)Eχ1,χ2
(z, s) for

γ ∈ Γ0(q1q2).(
Note ψ(

[
a b
c d

]
) = ψ(d)

)
.

Eigenfunction of all Hecke operators Tn with eigen value λχ1,χ2
(n, s).

E∗
χ1,χ2

(z, s) (the completed Eisenstein series) at s = 1 decomposes into

holomorphic and anti-holomorphic parts fχ1,χ2
(z) + χ2(−1)fχ1,χ2

(z).
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Original Definition of Sχ1χ2

Holomorphic part has the following fourier expansion:

fχ1,χ2(z) =

∞∑
n=1

λχ1,χ2(n, 1)√
n

exp(2πinz).

where

λχ1,χ2
(n, s) = χ2(sgn(n))

∑
ad=|n|

χ1(a)χ2(b)

(
b

a

)s− 1
2

.

The first definition of the newform Dedekind sum is as follows:

Definition

For primitive χ1, χ2 mod q1, q2 where χ1χ2(−1) = 1, and γ ∈ Γ0(q1q2)

Sχ1χ2
(γ) =

τ(χ1)

πi
(fχ1,χ2

(γz)− ψ(γ)fχ1,χ2
(z))
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Properties

Theorem

Sχ1χ2
(γ) = Sχ1χ2

(a, c) =
∑

j mod c

∑
nmod q1

χ2(j)χ1(n)B1

(
j

c

)
B1

(
n

q1
+
aj

c

)
where

B1(x) =

{
0, if x ∈ Z
x− ⌊x⌋ − 1

2 otherwise.

From the above theorem, we see the sum always lies in Q(ζn) (Q adjoined
with some root of unity ζn).

Sχ1χ2
is never trivial.

Sχ1χ2
(γ1γ2) = Sχ1χ2

(γ1) + ψ(γ1)Sχ1χ2
(γ2).

Sχ1χ2
is a homomorphism when ψ = 1, while Sχ1χ2

|Γ1(q1q2) is always a
homomorphism.
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The Hecke operator Tn

Definition
The weight 0 Hecke operator on automorphic forms with central character ψ is

Tn =
1√
n

∑
ad=n

ψ(n)
∑

b (mod d)

[
a b
0 d

]
.

As noted, Eχ1,χ2
(z, s) is an eigen function for this family of commuting linear

operators with eigenvalue λχ1,χ2
(n, s). When we specialize to s = 1 we deduce

that fχ1,χ2
(z) is as well:

Tnfχ1,χ2
(z) =

1√
n

∑
ad=n

ψ(n)
∑

b (mod d)

fχ1,χ2(
az + b

d
)

= λχ1,χ2(n, 1)fχ1,χ2(z).
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TnSχ1χ2

This gives an easy definition of TnSχ1χ2
:

TnSχ1χ2
(γ) =

τ(χ1)

πi
(Tnfχ1,χ2

(γz)− ψ(γ)Tnfχ1,χ2
(z))

= λχ1,χ2
(n, 1)Sχ1χ2

(γ).

We can then use the fourier expansion of fχ1,χ2(z) and the z independence of
Sχ1χ2

(γ) to get the following identity:

Theorem

For h, k, n ∈ Z, q1q2|k, and n, k > 0

1√
n

∑
ad=n

χ1χ2(a)
∑

b(mod d)

Sχ1χ2
(ah+ bk, dk) = λχ1,χ2

(n, 1)Sχ1χ2
(h, k).

Majure Texas A&M University 12 / 21



Preliminaries Defining Dedekind sums Hecke Operators Galois Action and Structure

TnSχ1χ2

This gives an easy definition of TnSχ1χ2
:

TnSχ1χ2
(γ) =

τ(χ1)

πi
(Tnfχ1,χ2

(γz)− ψ(γ)Tnfχ1,χ2
(z))

= λχ1,χ2
(n, 1)Sχ1χ2

(γ).

We can then use the fourier expansion of fχ1,χ2(z) and the z independence of
Sχ1χ2

(γ) to get the following identity:

Theorem

For h, k, n ∈ Z, q1q2|k, and n, k > 0

1√
n

∑
ad=n

χ1χ2(a)
∑

b(mod d)

Sχ1χ2
(ah+ bk, dk) = λχ1,χ2

(n, 1)Sχ1χ2
(h, k).

Majure Texas A&M University 12 / 21



Preliminaries Defining Dedekind sums Hecke Operators Galois Action and Structure

TnSχ1χ2

This gives an easy definition of TnSχ1χ2
:

TnSχ1χ2
(γ) =

τ(χ1)

πi
(Tnfχ1,χ2

(γz)− ψ(γ)Tnfχ1,χ2
(z))

= λχ1,χ2
(n, 1)Sχ1χ2

(γ).

We can then use the fourier expansion of fχ1,χ2(z) and the z independence of
Sχ1χ2

(γ) to get the following identity:

Theorem

For h, k, n ∈ Z, q1q2|k, and n, k > 0

1√
n

∑
ad=n

χ1χ2(a)
∑

b(mod d)

Sχ1χ2
(ah+ bk, dk) = λχ1,χ2

(n, 1)Sχ1χ2
(h, k).

Majure Texas A&M University 12 / 21



Preliminaries Defining Dedekind sums Hecke Operators Galois Action and Structure

Takeaways

This is a generalization of the classical case due to M. Knopp:

Theorem
For h, k, n ∈ Z, k, n > 0∑

ad=n

∑
b(mod d)

s(ah+ bk, dk) = σ(n)s(h, k), σ(n) =
∑
d|n

d.

More importantly, the fact that the Dedekind sums are eigenvectors of a family of
commuting linear operators means they are linearly independent.
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Definition of Galois action

Definition

Let σ ∈ Gal(Q/Q). Then,

σSχ1χ2(γ) = σ(
∑

j mod c

∑
nmod q1

χ2(j)χ1(n)B1

(
j

c

)
B1

(
n

q1
+
aj

c

)
)

=
∑

j mod c

∑
nmod q1

χσ
2 (j)χ

σ
2 (n)B1

(
j

c

)
B1

(
n

q1
+
aj

c

)
= Sχσ

1 ,χ
σ
2
(γ)
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The Number Field Containing Sχ1χ2
(Γ0(q1q2)

Theorem
The Dedekind sum Sχ1χ2 takes values in the number field F if and only if χ1 and
χ2 take values in F.

The backward direction of this theorem comes directly from the finite sum
definition. For the other, we choose any σ ∈ Gal(Q/F ) and must have

Sχ1χ2
= Sχσ

1 ,χ
σ
2
.

The linear independence of the sums then gives χ1 = χσ
1 and χ2 = χσ

2 , proving
the result.

Example

Sχ1χ2
takes rational values if and only if χ1 and χ2 are rational characters.
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Structure of Γ1(q1q2)/K
1
χ1,χ2

We use the following definitions:

Kχ1,χ2
= {γ ∈ Γ0(q1q2)|Sχ1χ2

(γ) = 0}
K1

χ1,χ2
= Γ1(q1q2) ∩Kχ1,χ2

F is the smallest number field over Q in which Sχ1χ2
takes values.

We will investigate Γ1(q1q2)/K
1
χ1,χ2

∼= Sχ1χ2(Γ1(q1q2)) because Sχ1χ2 |Γ1(q1q2) is
a homomorphism, and we will show its rank is equal to the degree of F over Q.
These arguments are carried over without changes to Γ0(q1q2)/Kχ1,χ2

in the case
of χ1χ2 = 1.
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χ1,χ2

Cont.

Lemma

(Consequence of) Schrier’s lemma
Every finite index subgroup of a finitely generated group is finitely generated.

Since Γ1(q1q2) is of finite index in SL2(Z) = ⟨
[
1 1
0 1

]
,

[
0 −1
1 0

]
⟩, it must

also have a set of finite generators {γj}rj=1. Then {Sχ1χ2(γj)}rj=1 generates
Sχ1χ2(Γ1(q1q2)).

We also know Sχ1χ2(Γ1(q1q2)) ⊂ (C,+) implies Sχ1χ2(Γ1(q1q2)) is torsion
free.

Combining these two facts shows Sχ1χ2(Γ1(q1q2)) is a free abelian group by
the structure theorem of ableian groups.
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Bounding the Rank

Lemma

The rank of Sχ1χ2
(Γ1(q1q2)) is bounded above by the degree of F/Q

Proof sketch:

Since F is the fraction field of its algebraic integers (OF ), we may ”bound”
the denominators of Sχ1χ2

(γj) by some d ∈ F .

Then Sχ1χ2
(Γ1(q1q2)) ⊂ 1

dOF

OF (and its fractional ideals) are free abelian groups of rank [F : Q].
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Bounding the Rank

Lemma

The rank of Sχ1χ2
(Γ1(q1q2)) is bounded below by the degree of F/Q

Proof sketch:

First, nontriviality of Sχ1χ2
means the rank is at least one.

Suppose Sχ1χ2
(Γ1(q1q2)) =

⊕d
i=1 αiZ for αi ∈ F, d < [F : Q] = n.

Then consider the n distinct Dedekind sums S
χ
σj
1 χ

σj
2

for σj ∈ Gal(F/Q).

Then we can construct a d× n matrix (α
σj

i )ij , that, by its dimension, has
nontrivial kernel, contradicting the linear independence of the Dedekind sums.
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