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Introduction



Dirichlet Characters

Definition (Dirichlet Character)

A Dirichlet Character, χ ( mod q) is a function
χ : Z → C satisfying

1 χ(n+ ql) = χ(n) for all n, l ∈ Z (periodicity)

2 χ(mn) = χ(m)χ(n) for all m,n ∈ Z (multiplicativity)

3 χ(n) = 0 if and only if gcd(n, q) > 1 (coprimality)

Example. Here is a table of the dirichlet characters modulo 5.

χ, n 0 1 2 3 4
χ0 0 1 1 1 1
χ1 0 1 −1 −1 1
χ2 0 1 i −i −1
χ3 0 1 −i i −1
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Dirichlet Characters-Properties

Here are a couple of useful properties and facts about Dirichlet
Characters:

Dirichlet characters modulo q form a group under multiplication.
The trivial character, χ0, is defined by χ0(n) = 1 for all
n ∈ (Z/qZ)× and χ0 = 0 otherwise.

In fact, they are in a one-to-one correspondence with elements
of (Z/qZ)×

They have a natural connection with the roots of unity: if χ is
of modulus q, then Im(χ) ⊆ Q(ζφ(q)). Put in other words,
χ(n)k = 1 for some k ∈ Z.



Dirichlet Characters-Properties

Here are a couple of useful properties and facts about Dirichlet
Characters:

Dirichlet characters modulo q form a group under multiplication.
The trivial character, χ0, is defined by χ0(n) = 1 for all
n ∈ (Z/qZ)× and χ0 = 0 otherwise.

In fact, they are in a one-to-one correspondence with elements
of (Z/qZ)×

They have a natural connection with the roots of unity: if χ is
of modulus q, then Im(χ) ⊆ Q(ζφ(q)). Put in other words,
χ(n)k = 1 for some k ∈ Z.



Dirichlet Characters-Properties

Here are a couple of useful properties and facts about Dirichlet
Characters:

Dirichlet characters modulo q form a group under multiplication.
The trivial character, χ0, is defined by χ0(n) = 1 for all
n ∈ (Z/qZ)× and χ0 = 0 otherwise.

In fact, they are in a one-to-one correspondence with elements
of (Z/qZ)×

They have a natural connection with the roots of unity: if χ is
of modulus q, then Im(χ) ⊆ Q(ζφ(q)). Put in other words,
χ(n)k = 1 for some k ∈ Z.



Dirichlet Characters-Properties

Here are a couple of useful properties and facts about Dirichlet
Characters:

Dirichlet characters modulo q form a group under multiplication.
The trivial character, χ0, is defined by χ0(n) = 1 for all
n ∈ (Z/qZ)× and χ0 = 0 otherwise.

In fact, they are in a one-to-one correspondence with elements
of (Z/qZ)×

They have a natural connection with the roots of unity: if χ is
of modulus q, then Im(χ) ⊆ Q(ζφ(q)). Put in other words,
χ(n)k = 1 for some k ∈ Z.



Dirichlet Characters-Properties

Here are a couple of useful properties and facts about Dirichlet
Characters:

Dirichlet characters modulo q form a group under multiplication.
The trivial character, χ0, is defined by χ0(n) = 1 for all
n ∈ (Z/qZ)× and χ0 = 0 otherwise.

In fact, they are in a one-to-one correspondence with elements
of (Z/qZ)×

They have a natural connection with the roots of unity: if χ is
of modulus q, then Im(χ) ⊆ Q(ζφ(q)). Put in other words,
χ(n)k = 1 for some k ∈ Z.



Modular Forms

Definition (Modular Forms)

A modular form of weight k for Γ = SL2(Z) is a function f : H → C
such that

1 For all γ ∈ Γ, z ∈ H, we have

f

(
az + b

cz + d

)
= ϵ(a, b, c, d)(cz + d)kf(z).

2 The limit y → ∞ of f(x+ iy) exists (and is not ∞)

3 f(z) is complex analytic (i.e. complex differentiable for all
z ∈ H).

One of the most pivotal roles of modular forms was in the proof of Fermat’s last
theorem. They are also used in the partition function, and figuring out the
densest way to pack spheres!



Dedekind η-function

The Dedekind η function is an example of a modular form which is
used to study the following counting problem:

Definition (The partition function)

p(n) counts the number of ways to write n as a sum of positive
integers in decreasing order.

Example.
p(5) = 7, since 5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 =
2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.



The η-Function & the Partition Function

The generating function of p(n), F (q), is related to the Dedekind η
function, by

F (q) =
∞∑
n=0

p(n)qn =
∞∏
n=1

(1− qn)−1 =
q1/24

η(z)

Definition (Dedekind η - function)

For z ∈ H, define

η(z) = q1/24
∞∏
n=1

(1− qn)



The Dedekind Eta function and the

Dedekind Sum

The η function is a modular form of weight 1/2 and satisfies the
transformation law

η

(
az + b

cz + d

)
= ϵ(a, b, c, d)(cz + d)

1
2η(z),

where

ϵ(a, b, c, d) :=

{
e

biπ
12 , c = 0, d = 1

eiπ(
a+d
12c

−S(d,c)− 1
4), c > 0.

The Dedekind sum was first introduced to study the automorphy
factor for the transformation of the Dedekind η function.
It has also appeared outside of number theory, for example in the
enumeration of lattice points in tetrahedra.



Classic Dedekind Sum

Definition (Dedekind Sum)

For coprime positive integers h, k ∈ N, the classical Dedekind sum is
defined by

s(h, k) =
∑

j (mod k)

B1

(
j

k

)
B1

(
hj

k

)
,

where B1(x) is the first Bernoulli function (also known as the
sawtooth function):

B1(x) =

{
0, if x ∈ Z
x− ⌊x⌋ − 1

2
, otherwise.



First Bernoulli Function



Congruence Subgroups

SL2(Z) is the group of invertible 2x2 matrices with integral values.
Two important subgroups of SL2(Z) that we will need are

Γ0(n) :=

{[
a b
c d

]
∈ SL2(Z) : c ≡ 0 mod n

}
and

Γ1(n) :=

{[
a b
c d

]
∈ SL2(Z) : a, d ≡ 1 mod n, c ≡ 0 mod n

}
.

These are called congruence subgroups and we usually denote their
elements by γ. Note also that Γ1(n) ⊆ Γ0(n).



Newform Dedekind Sum

It turns out that we can combine Dirichlet characters and the
Dedekind eta function to arrive at a generalization of the Dedekind
eta function. This generalization naturally leads to the generalized
Dedekind sum.

Definition: Newform Dedekind Sum (SVY)

Let χ1 and χ2 be nontrivial primitive characters with moduli q1 and
q2, respectively, such that χ1χ2(−1) = 1. For

γ =

(
a b
c d

)
∈ Γ0(q1q2) with c ≥ 1, the generalized Dedekind sum

associated to χ1 and χ2 is given by

Sχ1,χ2(γ) =
∑

j (mod c)

∑
n (mod q1)

χ2(j)χ1(n)B1

(
j

c

)
B1

(
n

q1
+

aj

c

)
.
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Understanding the Two Conjecture



The Two Conjecture-Motivations

The main goal of this project is to understand the image of the
generalized Dedekind sum. The following theorem is a helpful
restriction on the image of the sum:

Theorem (Majure 2022)

The image of Sχ1,χ2(Γ1(q1q2)) (note Γ1 ⊆ SL2(Z)) is a lattice of full
rank inside Fχ1,χ2 . In other words,
Im(Sχ1,χ2) = {α1z1 + α2z2 + · · ·+ αnzn : zi ∈ Z, αi ∈ F}.

Example. When χ1, χ2 are quartic, Im(Sχ1,χ2) forms a lattice in C.
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Two Conjecture-intro

Conjecture (De Leon & McCormick)

Let χ1, χ2 be primitive, quadratic Dirichlet characters of moduli q1
and q2, respectively, such that χ1χ2(−1) = 1. Then,

Sχ1,χ2(Γ1(q1q2)) = 2Z.

To prove this conjecture, we need to show

Sχ1,χ2(Γ1(q1q2)) ⊆ 2Z
and

2Z ⊆Sχ1,χ2(Γ1(q1q2)).
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The Two Conjecture with Other

Characters

a.k.a. why 2 is my new favorite number

What if χ1, χ2 are not quadratic?
For χ of modulus q,

Sχ1,χ2 =
∑∑

χ2(·)χ1(·)f g

where Im(f, g) ⊆ Q and χ(n) ⊆ Q(ζk) for k = φ(q) and . This tells
us that Sχ1,χ2(n) ⊆ Q(ζk) as well. In other words, whatever number
field χ1, χ2 live in, the Dedekind sum must live in the same number
field!

In particular, the 2-conjecture for quadratic characters says that the
Im(Sχ1,χ2) lies in rational integers. Now we wonder if the two
conjecture still holds for more general characters. Let’s compute
some data!
thank you Carlos for the code!
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The Two Conjecture with Other

Characters

a.k.a. why 2 is my new favorite number

Computations for small values of q1, q2

χ1 : mod(order) χ2 Image Codomain
3(2) 7(2) 2Z Q
5(2) 8(2) 2Z Q
5(2) 7(3) {2a∗ + 2ωb : a, b ∈ Z} Q(ω)
5(2) 7(3) {2a∗ + 2ωb : a, b ∈ Z} Q(ω)
5(4) 5(4) {2a+ 2ib : a, b ∈ Z} Q(i)
5(4) 5(4) {2a+ 2ib : a, b ∈ Z} Q(i)
5(4) 5(4) {2a+ 2ib : a, b ∈ Z} Q(i)

∗this has been verified for 1000 of the 7000 generating matrices



Evaluating the Dedekind Sum

What does it mean to look at the image of the Dedekind sum? First

of all, we need a matrix γ ∈ Γ1. For γ =

(
a b
c d

)
the following

conditions must be satisfied:

a, b, c, d, q1, q2 ∈ Z
ad-bc =1

gcd(a, c) = 1

q1 ∗ q2|c
a ≡ 1 mod (q1 ∗ q2)



Evaluating the Dedekind Sum

Let γ =

(
22 x
105 x

)
with q1 = 3 and q2 = 7. Then the Dedekind sum

is as follows:

Sχ1,χ2(γ) =
∑

j (mod 105)

∑
n (mod 3)

χ2(j)χ1(n)B1

(
j

105

)
B1

(
n

3
+

22j

105

)
.

From our computations, this sum surprisingly evaluates to 2.

The floor function in the Bernoulli function involved in this sum and
the Dirichlet characters make it inherently difficult to evaluate.



Bounding the Denominator



New way to write the sum

One way to re-write the Dedekind sum is

∑
n mod q1

∑
j0 mod q2

χ1(n)χ2(j0)

( ∑
k mod (c/q2)

B1

(
j0
c
+

q2k

c

)

B1

(
n

q1
+

aj0
c

+
akq2
c

))

Because of our previous observations, it seems like the Bernoulli
functions may be controlling the integrality of the sum, and the
characters control which field the sum lies in. Thus, as we continue,
we will work on showing the Bernoulli functions on the inside are
integers so we can show the whole sum becomes an integer.



Properties of the Bernoulli Function

In order to understand the sum better, we needed to understand
properties of the Bernoulli function.

Proposition (Rademacher 1956)

Let y ∈ R, λ, k ∈ Z, and B1 be the Bernoulli Sawtooth function.∑
λ mod k B1

(
x+λ
k

)
= B1(x). In particular, if x ∈ Z, the sum is

zero.∑
λ mod k λB1

(
λ
k

)
= 1

6
(k − 1)(2k − 1).

Using these properties, we derived the following properties.



Properties of the Bernoulli Function

In order to understand the sum better, we needed to understand
properties of the Bernoulli function.

Proposition (Rademacher 1956)

Let y ∈ R, λ, k ∈ Z, and B1 be the Bernoulli Sawtooth function.∑
λ mod k B1

(
x+λ
k

)
= B1(x). In particular, if x ∈ Z, the sum is

zero.∑
λ mod k λB1

(
λ
k

)
= 1

6
(k − 1)(2k − 1).

Using these properties, we derived the following properties.



Proposition: Bernoulli Properties

Let x ∈ R and a ∈ Z such that gcd(a, k) = 1. Then∑
λ mod k

B1

(
aλ+ x

k

)
=

∑
λ mod k

B1

(
λ+ x

k

)
Let y ∈ R, [y] ≡ m mod k. Then∑

λ mod k

λB1

(
y + λ

k

)
= fk({y})−

mk

2
+

m2

2

with fk({y}) = (k − 1)(6{y}+ k − 2)/12.



Formula for the Newform Dedekind Sum

Proposition: Newform Dedekind Sum Formula
If c = rq1q2, then we can write the newform Dedekind Sum as

S(a, c) = − 1

rq1

c−1∑
j=0

q1−1∑
n=0

χ2(j0)χ1(n)

⌊
j

q2

⌋⌊
aj

c
+

n

q1

⌋
Ignoring the factor in front, the double sum is an integer, this means
the denominator of S(a, c) divides rq1.



Formula for the Newform Dedekind Sum

We begin by rewriting the newform Dedekind Sum in terms of the
fractional part function, which we denote using curly brackets

S(a, c) =
c−1∑
j=0

q1−1∑
n=0

χ2(j)χ1(n)

{
j

c

}{
aj

c
+

n

q1

}

Substituting
{

j
c

}
= j

c
and

{
aj
c
+ n

q1

}
=
(

aj
c
+ n

q1

)
−
⌊
aj
c
+ n

q1

⌋
yields S(a, c) = P −Q where

P =
c−1∑
j=0

q1−1∑
n=0

χ2(j)χ1(n)
j

c

(
aj

c
+

n

q1

)

Q =
c−1∑
j=0

q1−1∑
n=0

χ2(j)χ1(n)
j

c

⌊
aj

c
+

n

q1

⌋
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⌊
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⌋



Formula for the Newform Dedekind Sum

Let’s look at the first double sum

P =
c−1∑
j=0

q1−1∑
n=0

χ2(j)χ1(n)

(
aj2

c2
+

nj

cq1

)

Using the orthogonality of Dirichlet characters, we can see that the
aj2

c2
term will simply vanish.

P =
c−1∑
j=0

q1−1∑
n=0

χ2(j)χ1(n)
nj

cq1

Using the periodicity of χ2 and a change of variables, we get

P =
1

q1q2

[
q2−1∑
m=0

χ2(m)m

]
·

[
q1−1∑
n=0

χ1(n)n

]
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Formula for the Newform Dedekind Sum

Recalling that S(a, c) = P −Q, let’s look at Q. We will express
Q = R + T , with R = P , so it will turn out that S(a, c) = −T .

Q =
c−1∑
j=0

q1−1∑
n=0

χ2(j)χ1(n)
j

c

⌊
aj

c
+

n

q1

⌋

We can use a change of variables j → j0 + kq2 to obtain

Q =

q2−1∑
j0=0

q1−1∑
n=0

χ2(j0)χ1(n)

rq1−1∑
k=0

j0 + kq2
c

⌊
a(j0 + kq2)

c
+

n

q1

⌋
We can distribute this sum to get

R =

q2−1∑
j0=0

q1−1∑
n=0

χ2(j0)χ1(n)

rq1−1∑
k=0

j0
c

⌊
a(j0 + kq2)

c
+

n

q1

⌋

T =

q2−1∑
j0=0

q1−1∑
n=0

χ2(j0)χ1(n)

rq1−1∑
k=0

kq2
c

⌊
a(j0 + kq2)

c
+

n

q1

⌋
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Formula for the Newform Dedekind Sum
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k=0

j0
c

⌊
a(j0 + kq2)
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After rewriting some terms and simplifying this sum using the formula

k−1∑
λ=0

⌊
x+ aλ

k

⌋
= ⌊x⌋+ 1

2
(a− 1)(k − 1)

we get

R =
1

q1q2

[
q2−1∑
m=0

χ2(m)m

]
·

[
q1−1∑
n=0

χ1(n)n

]
= P

Since these two sums will cancel out, we get

S(a, c) = −T
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Formula for the Newform Dedekind Sum

Writing out S(a, c) = −T , we have

S(a, c) = − 1

rq1

q2−1∑
j0=0

q1−1∑
n=0

χ2(j0)χ1(n)

rq1−1∑
k=0

k

⌊
a(j0 + kq2)

c
+

n

q1

⌋

Finally, we revert the change of variables, using k =
⌊

j
q2

⌋
to get

S(a, c) = − 1

rq1

c−1∑
j=0

q1−1∑
n=0

χ2(j)χ1(n)

⌊
j

q2

⌋⌊
aj

c
+

n

q1

⌋
If we ignore the factor outside, the double sum is an integer. So, we
obtain that the denominator of S(a, c) divides rq1.



Reciprocity Law & Homomorphism

The newform Dedekind sum satisfies a family of reciprocity laws, we
have found the following one the most useful.

Proposition: Reciprocity Law (SVY20)

Let γ =

(
a b

cq1q2 d

)
∈ Γ1(q1q2) and γ′ =

(
d −c

−bq1q2 a

)
.

Then,
Sχ1,χ2(γ) = χ1(−1)Sχ2,χ1(γ

′).

Proposition: Homomorphism Property
(SVY20)

Sχ1,χ2 : Γ1(q1q2) → C is a group homomorphism.



Newform Dedekind Sum Denominator

Using the fact that Sχ1,χ2 is a group homomorphism, we can see that

Sχ1,χ2

([
a b
c d

])
= Sχ1,χ2

([
a b
c d

] [
1 n
0 1

])
= Sχ1,χ2

([
a an+ b
c cn+ d

])

Then, by the Reciprocity Law,

Sχ1,χ2(a, c) = ±Sχ2χ1(cn+ d,−(an+ b)q1q2)

Since a and b are coprime, by Dirichlet’s Theorem on Arithmetic
Progressions, there are infinitely many primes of the form an+ b.
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Newform Dedekind Sum Denominator

Letting d be the denominator of Sχ1,χ2(a, c), we can choose two
primes p1 and p2 such that

d | p1q2 and d | p2q2, so d | q2

Using the reciprocity formula and repeating the argument, we get that

d | q1

So,
d | q1, q2 and thus d | gcd(q1, q2)

Proposition: Newform Dedekind Sum
Denominator
The denominator of Sχ1,χ2(a, c) divides gcd(q1, q2). So, when q1 and
q2 are coprime, Sχ1,χ2(a, c) is an integer.
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Advancements Toward Evenness



Symmetry in the Generalized Dedekind

Sum

Proposition
Let χ1 and χ2 be nontrivial, primitive, quadratic characters such that
χ1χ2(−1) = 1. The terms of the generalized Dedekind sum over j
(mod c) demonstrate symmetry across the term j = c

2
such that

χ2(j)χ1(n)B1

( j

c

)
B1

( n

q1
+

aj

c

)
= χ2(c− j)χ1(n)B1

( c− j

c

)
B1

( n

q1
+

a(c− j)

c

)

Once we have a way to show the sum is an integer, this could help
prove that the sum is even!



Symmetry in the sum

Beginning with a change of variables j → c− j and n → −n, we have

χ2(c− j)χ1(−n)B1

(c− j

c

)
B1

(a(c− j)

c
+

−n

q1

)
. (1)

Since the characters are quadratic, they are not complex. Thus
χ = χ. Also since χ1χ2(−1) = 1, the characters have the same
parity. In the case where the parity of the characters is odd, by
periodicity,

χ2(c− j) = −χ2(j),

χ1(−n) = −χ1(n),

so
χ2(c− j)χ1(−n) = χ2(j)χ1(n).



Symmetry in the sum

In the case where the parity of the characters in even, by periodicity,

χ2(c− j) = χ2(j),

χ1(−n) = χ1(n),

so
χ2(c− j)χ1(−n) = χ2(j)χ1(n).

Thus we have

χ2(j)χ1(n)B1

(
1− j

c

)
B1

(
a− (

aj

c
+

n

q1

))
,

which can be further simplified using the periodic and odd properties
of the Bernoulli Sawtooth function.



Condition for an even sum

We combine our symmetry and integral observations to show that the
sum is an even integer. First, we need the following Lemma.

Lemma
Let Sχ1,χ2 = (a, c). For c = rq1q2, we can assume r is odd.

In order to prove this, we use the reciprocity formula and
homomorphism properties of the Dedekind Sum. The following
theorem is a consequence of this Lemma.

Theorem
If both q1 and q2 are odd, then

Sχ1,χ2(a, c) ⊆
1

rq1
2Z[χ1, χ2]
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Condition for an even sum

Theorem
If both q1 and q2 are odd, then

Sχ1,χ2(a, c) ⊆
1

rq1
2Z[χ1, χ2]

By symmetry =⇒ Sχ1,χ2(a, c) =
2A

c2
.A ∈ Z

By sum manipulation =⇒ Sχ1,χ2(a, c) =
B

rq1
, B ∈ Z

Equating these, and assuming c is odd, we get

2Arq1 = c2B,

so B is even.



Next steps

Use the reciprocity formula to rewrite the innermost sum

Understand how the a value affects Bernoulli and floor functions

We know a = 1 is in the kernel, look for other kernel values we
can find

Pursue the possibility of a new reciprocity formula
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