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Markov Processes

A Markov process is a collection of random variables taken over
continuous time such that the future state of the process depends
only on the present state of the process [Kua].

The state space of a Markov process is the collection of all values
that the process can take.

The transition matrix of a Markov process lists the probabilities
of jumps between different states.
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Generators

Take Markov process X (t) with transition matrix P(t). Note that
P(0) = I .

The generator matrix Q describes X (t) and can be found by
taking P(t) = etQ or P ′(O) = QP(0) = Q [Fer].
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ASEP

An asymmetric simple exclusion process (ie. ASEP) is a Markov
process in which particles on a lattice jump between sites [Spi70].

One particle is allowed at each site, and the jump rates of particles
to the left and right are different such that the particle system
exhibits net drift in one direction.
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Type D ASEP

Type D ASEP extends ASEP to two particle species (ie. types of
particles), such that two particles of different species can exist at
the same site but two particles of the same species cannot [RLY23].

This process takes three conditions: an asymmetry parameter that
describes the direction of particle drift, a parameter that gives the
speed of particle drift, and a parameter that describes how
particles of different species interact.
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Visualizing Type D ASEP

Jump rates vary by particle species (ie. species 1 or 2) and
orientation.
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Markov Projection
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Stochastic Fusion

[Kua19]
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The Problem

Qt = ΛPtΦ

Qt : Fused Transition Matrix

Λ : Reverse Fusion Map

Pt : Original Transition Matrix

Φ : Fusion Map
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The Problem Continued

Qt = ΛPtΦ

LQ = ΛLpΦ
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The Most Basic Case
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Expanding to Four Lattice Sites

Eva Engel, Connor Panish, Lillian Stolberg, Erik Brodsky Texas A&M REU 2024 advised by Professor Jeffrey Kuan

Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases



Probability Presentation Algebra Presentation References

Middle Swap
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Making Fused Matrix

LQ = ΛLpΦ

LQ = (Λ(2)⊗Λ(2))(I16×16⊗L2)(Φ
(2)⊗Φ(2))
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Displaying Fused Matrix

LQ = L9 ⊕
4⊕

i=1
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4⊕
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[0]
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Three Block of Fused Matrix

LDQ = L9 ⊕
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Defining the Stationary Distribution

The stationary distribution of a Markov chain describes the
distribution of states visited by the process in the long-term
[Mar06].

Rigorously, let Xt be a Markov chain with transition matrix P. The
stationary distribution π of Xt satisfies πP = π [Mar06]. For
generator L, πL = 0.
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Finding Stationary Distributions

A communicating class is a set of states that can transform into
each other via Type D ASEP.

We find the stationary distribution for each communicating class.
For communicating class A with stochastic fusion generator LQA

,
the stationary distribution πA for A satisfies πALQA

= 0.

Stationary distribution is not affected by the speed of convergence.
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Taking n → ∞

Recall: q measures the direction of drift of the system and n
measures the speed of drift.

Multiply generator of stochastic fusion process by q±2n then take
limit as n → ∞. We get a finite limit.

Intuitively, as drift speed of Type D ASEP increases to infinity, the
drift speed of stochastically-fused process also increases to infinity.
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Spectral Gap

λ2 = second-largest eigenvalue of generator matrix

Spectral gap is |λ2| for our project.

For q > 1, limn→∞ |λ2| = ∞ for communicating classes with 2 or 3
states.

For 0 < q < 1, limn→∞ |λ2| = 0 for communicating classes with 2
or 3 states.
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Relaxation Time

Relaxation time is 1
|λ2| [Bli64].

For q > 1, limn→∞
1

|λ2| = 0, so speed of convergence to stationary
distribution accelerates for 2 and 3-state communicating classes.

For 0 < q < 1, limn→∞
1

|λ2| = ∞, so speed of convergence to
stationary distribution becomes very slow for 2 and 3-state
communicating classes.
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Defining Markov Duality

Take Markov processes Xt and Yt with state spaces X and Y,
respectively. Let LX and LY be generators of Xt and Yt . Let M be
a matrix representing a function.

Xt and Yt are dual with respect to the function represented by M
if LXM = MLTY [DF90].
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q-Krawtchouk Polynomials

We are looking for self-duality, ie. D such that LDQD = D(LDQ)
T .

[Bly+23] proposed a self-duality function for unfused Type D
ASEP using q-Krawtchouk polynomials.

Does this function work for our fused Type D ASEP?

Eva Engel, Connor Panish, Lillian Stolberg, Erik Brodsky Texas A&M REU 2024 advised by Professor Jeffrey Kuan

Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases



Probability Presentation Algebra Presentation References

q-Krawtchouk Continued

For the D we found using [Bly+23]’s method,
LDQD[1, 2] ̸= D(LDQ)

T [1, 2].

So D is not a matrix of Markov self-duality.

Using a probabilistic approach rather than an algebraic one created
different duality functions.
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Recall Block Diagonal

LDQ = L9 ⊕
4⊕
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L6 ⊕
4⊕
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Trivial Duality and Duality Reveiwed

Ex(D(x ,X (t)) = Ex(D(X (t), x))

LDQD = D(LDQ)
T
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Diagonalization

Z =
4⊕

i=1

[0]

LDQ = L9 ⊕
4⊕

i=1

L6 ⊕
4⊕

i=1

L4 ⊕
4⊕

i=1

L3 ⊕
8⊕

i=1

L2 ⊕Z

= P9A9P−1
9 ⊕

4⊕
i=1

P6A6P−1
6 ⊕

4⊕
i=1

P4A4P−1
4

⊕
4⊕

i=1

P3A3P−1
3 ⊕

8⊕
i=1

P2A2P−1
2 ⊕Z

= PAP−1 ⊕Z
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Finding a Dual

LDQD = D(LDQ)
T

LDQ = PAP−1 ⊕Z

D = P(P)T ⊕Z

= P9(P9)
T ⊕

4⊕
i=1

P6(P6)
T ⊕

4⊕
i=1

P4(P4)
T

⊕
4⊕

i=1

P3(P3)
T ⊕

8⊕
i=1

P2(P2)
T ⊕Z
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Non-Trivial Dual Example

P4(P4)
T =


1 + 1

q8
+ 1

q16
1− q4−1

q8
− 1

q12
1− 1

q12
1− 1

q4
+ 1

q8

1− q4−1
q8

− 1
q12

2 +
(q4−1)

2

q8
+ 1

q8
1
q8

1 + q4−1
q4

− 1
q4

1− 1
q12

1
q8

2 + 1
q8

1− 1
q4

1− 1
q4

+ 1
q8

1 + q4−1
q4

− 1
q4

1− 1
q4

3



LDQD = D(LDQ)
T
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Background

Lie Groups

A Lie group is a set G which is structurally both a group and a
differentiable manifold.

Multiplication, m : G × G → G , is a differentiable map.

Inversion is a smooth map.
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Background

Examples of Lie Groups

(Rn,+)

(R∗,×)

(S1,×)

(GLn(R),×) where GLn(R) is embedded in Rn2

Many matrix groups when embedded
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Background

Lie Algebras

A Lie algebra is the tangent space to a Lie group at the identity
of the group.
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Background

Lie Algebras in GLn(R)

For a Lie group G ⊂ GLn(R), the corresponding Lie algebra g is a
vector space such that, for some neighborhood U ⊂ GLn(R) of 1G
and some neighborhood u ⊂ gln(R) of 0g, the following maps are
inverses of each other:

log : U ∩ G → u ∩ g

exp : u ∩ g → U ∩ G
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Background

Examples of Lie Algebras

Lie group Lie algebra

GLn(R) gln(R) = Mn(R)
SLn(R) sln(R) = {x ∈ GLn(R)|tr(x) = 0}
SOn(R) son(R) = {x ∈ GLn(R)|x + xT = 0}
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Background

The Special Orthogonal Group, SO2n

SO2n =
{
X ∈ M2n×2n(C) : XXT = I , detX = 1

}
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Background

The Special Orthogonal Lie Algebra

so2n =

{[
A C

−CT B

]
: A,B,C ∈ Mn×n(C),A = −AT ,B = −BT

}
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Background

Universal Enveloping Algebra

In a Lie algebra g, the usual multiplication is not well-defined in
general.
Therefore, we define the universal enveloping algebra, U(g), to
be an algebra generated by elements in g which follows certain
relations, including a commutator relation.
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Background

Universal Enveloping Algebra — U(so6)

U(so6) is generated by {E1,E2,E3,F1,F2,F3,H1,H2,H3} with
relations:

[Ei ,Fi ] = Hi , 1 ≤ i ≤ 3

and
E 2
l Ej + EjE

2
l = 2ElEjEl ; F 2

l Fj + FjF
2
l = 2FlFjFl

for (l , j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)} .
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Background

The Quantum Group — Uq(so6)

U(so6) can be used to represent a symmetric particle system.
However, allowing a parameter 0 < q ≤ 1 allows drift and an
asymmetric particle system.
Thus, we use the q-deformed quantum group, Uq(so6), which was
created by both [Dri85] and [Jim85] independently.
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Background

Relations of Uq(so6)

Uq(so6) is generated by {E1,E2,E3,F1,F2,F3, q
H1 , qH2 , qH3} with

relations:

[Ei ,Fi ] =
qHi − q−Hi

q − q−1
;

qHiEj = qαi ·αjEjq
Hi ;

qHiFj = q−αi ·αjFjq
Hi

for 1 ≤ i , j ≤ 3 and

E 2
l Ek+EkE

2
l = (q+q−1)ElEkEl ; F 2

l Fk+FkF
2
l = (q+q−1)FlFkFl

for (l , k) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)} .
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Background

Coproduct of Uq(so6)

We also define coproducts of the generators. This, together with
the relations, makes Uq(so6) a bialgebra.

∆(Ei ) = Ei ⊗ 1 + qHi ⊗ Ei

∆(Fi ) = 1⊗ Fi + Fi ⊗ q−Hi

∆(qHi ) = qHi ⊗ qHi
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Background

Representation of Uq(so6)

Uq(so6) can be represented as a subset of M6×6(R[q, q−1]) as
follows:

Ei Fi qHi

i=1 E1,2 − E5,4 E2,1 − E4,5 qE1,1 + q−1E2,2 + E3,3 + q−1E4,4 + qE5,5 + E6,6

i=2 E2,3 − E6,5 E3,2 − E5,6 E1,1 + qE2,2 + q−1E3,3 + E4,4 + q−1E5,5 + qE6,6

i=3 E3,5 − E2,6 E5,3 − E6,2 E1,1 + qE2,2 + qE3,3 + E4,4 + q−1E5,5 + q−1E6,6
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Background

REU 2020’s Central Element (page 1)

q−4−2H1−H2−H3 + q−2−H2−H3 + qH2−H3 + qH3−H2 + q2+H2+H3

+q4+2H1+H2+H3 +
r2

q3
F1q

−H1−H2−H3E1 +
r2

q
F2q

−H3E2

+
r2

q
F3q

−H2E3 + r2qF2q
H3E2 + r2qF3q

H2E3 + r2q3F1q
H1+H2+H3E1

+
r2

q3
(qF12 − F21)q

−H1−H3(qE21 − E12)

+
r2

q3
(qF13 − F31)q

−H1−H2(qE31 − E13)
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Background

REU 2020’s Central Element (page 2)

+ r2q(qF21 − F12)q
H1+H3(qE12 − E21)

− r2q(qF31 − F13)q
H1+H2(qE13 − E31)

− r2

q3
(q2F123 − qF213 − qF312 + F231)q

−H1(q2E231 − qE312 − qE213 + E123)

− r2

q
(q2F231 − qF312 − qF213 + F123)q

H1(q2E123 − qE213 − qE312 + E231)

− r4

q2
((q2 + 1)F1231 − qF1312 − qF2131)((q

2 + 1)E1231 − qE1312 − qE2131)

− r4F2F3E2E3

[Kua+20]
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What we’ve been up to

The Algebraic Approach

Our goals:

Use the 2020 REU’s central element C to algebraically
compute a generator for a reversible Markov process

Compare results with the probabilistic approach
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What we’ve been up to

Algebraic Steps

How do we get a Markov process generator algebraically?

1 Compute the 20-dimensional irreducible representation W of
Uq(so6)

2 Compute πW⊗W (C ), the 400× 400 matrix corresponding to
REU 2020’s central element in the representation W ⊗W

3 Decompose W ⊗W into a direct sum of weight spaces to
block πW⊗W (C )

4 Apply the method of [Kua19] to produce a ground state
transformation of πW⊗W (C )

5 Apply this ground state transformation to produce a matrix
whose rows sum to 0

Eva Engel, Connor Panish, Lillian Stolberg, Erik Brodsky Texas A&M REU 2024 advised by Professor Jeffrey Kuan

Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases



Probability Presentation Algebra Presentation References

What we’ve been up to

Weight Modules

We define P to be the weight lattice of Uq(so6), with λ ∈ P called
a weight.

vλ is called a highest weight vector if E1vλ = E2vλ = E3vλ = 0.

Then, a Uq(so6)-module M is a highest weight module if

M = {Avλ|A ∈ Uq(so6)} .
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What we’ve been up to

Highest Weight Modules

Since Uq(so6) can be triangularly decomposed into its three
subalgebras generated by {Ei}, {qHi}, and {Fi}.

M can be computed by multiplying the representations of Fi s with
a highest weight vector vλ.

{πV (Ei )} annihilates e1 ⊗ e1. We generate its corresponding
Uq(so6)-module W next.
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What we’ve been up to

Finding W

W is the vector subspace of R6 ⊗ R6 spanned by vectors of one of
the following forms, where 1 ≤ i , j , k , ℓ,m ≤ 3:

e1 ⊗ e1

πV (Fi )(e1 ⊗ e1)

πV (FiFj)(e1 ⊗ e1)

πV (FiFjFk)(e1 ⊗ e1)

πV (FiFjFkFℓ)(e1 ⊗ e1)

πV (FiFjFkFℓFm)(e1 ⊗ e1)
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What we’ve been up to

W is Irreducible

A finite-dimensional highest weight module is irreducible. Thus, by
construction, W is an irreducible representation. Thus, πW (C ) is
actually a diagonal matrix. We confirmed computationally that

πW (C ) =
(
q8 + q2 + 2 + q−2 + q−8

)
Id20
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Motivation: Crystal Bases

In the irreducible representation of M6×6(R[q, q−1]), we had basis
vectors e1, ..., e6.
However, in the representation V , our basis vectors were
q-deformed (which matches its decomposition into irreducible
representations).
By letting q → 0, the q-deformed basis vectors match the basis
vectors ei ⊗ ej .
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Motivation: Crystal Bases, cont

This motivates crystal bases - by letting q → 0, we can get a
simpler expression for the bases of Uq(so6)-modules.
Doing this will allow us to decompose tensors of irreducible
representations (namely, W ⊗W ) into a direct sum of irreducible
representations. From there, we can decompose each irreducible
representation into weight spaces. Then, from the weight spaces
we can recover the eigenvalues and multiplicities of each block in
the 400x400 Hamiltonian then compare them to those of the
probability group.
Background and theorems on crystal bases are from [HK02].
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Roots and Weights

Let Li be the linear functional taking a matrix to its i th diagonal
entry.
Then, so6 has simple roots

α1 = L1 − L2

α2 = L2 − L2

α3 = L2 + L3

and fundamental weights

ω1 = L1

ω2 =
1
2(L1 + L2 − L3)

ω3 =
1
2(L1 + L2 + L3).
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q-integers C(q)

Define a q-integer to be of the form

[k]q =
qk − q−k

q − q−1

which are elements of the field C(q). Then, define

F
(k)
i u =

1

[k]q!
F k
i u
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Kashiwara Operators

The Kashiwara operators permute tensor products of basis vectors
in a natural way. Rigorously, given a decomposition of a weight
vector

u =
n∑

k=0

F
(k)
i uk

for each i = 1, 2, 3, we define

Ẽi =
N∑

k=1

F
(k−1)
i uk

and

F̃i =
N∑

k=0

F
(k+1)
i uk
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L(λ),B(λ)

W is the irreducible highest weight Uq(so6)-module with highest
weight λ and highest weight vector vλ. Define:

L(λ) to be a free submodule of W spanned by
{F̃i1 ...F̃ine1 ⊗ e1} with each ik ∈ {1, 2, 3} and n ≥ 0. This is
the crystal lattice of W .

B(λ) to be

{F̃i1 ...F̃ine1 ⊗ e1 + qL(λ)|ik ∈ {1, 2, 3}, n ≥ 0} \ {0}
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Crystal Limit

A crystal lattice L is a submodule over the localization of C[q],
and is a principal ideal domain. Thus, modding by its unique
maximal ideal qL, we obtain the equivalent of letting q → 0.
Projecting v ∈ L to v̄ ∈ L/qL is known as taking the crystal limit
of v .
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Crystal Bases, defn

A pair (L,B) is a crystal base of a Uq(so6)-module M if it satisfies
the following conditions:

L is a crystal lattice of M

B is a C-basis of L/qL
B =

⊔
Bλ, where Bλ = B ∩ L/qL, λ ∈ P

ẼiB ⊂ B ∪ {0}, F̃iB ⊂ B ∪ {0} for each i = 1, 2, 3

F̃ib1 = b2 iff b1 = Ẽib2 for every b1, b2 ∈ B, i = 1, 2, 3
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Crystal Graphs

An arrow superscripted with i from vj to vk symbolizes that

F̃ivj = vk . j represents vj , and j̄ represents vj̄ .

1 2

3

3̄

2̄ 1̄
1

2

3 2

3

1

Figure: Crystal Graph of V
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Tensor Product Theorem

Let V (λ), V (µ) be Uq(so6)-modules with corresponding crystal
bases (L(γ),B(γ)), (L(µ),B(µ)).

Then, (L(γ)⊗ L(µ),B(γ)× B(µ)) is a crystal basis of
V (λ)⊗ V (µ), where the action of F̃i is defined by:

F̃i (b1 ⊗ b2) =

{
F̃ib1 ⊗ b2 φi (b1) > εi (b2)

b1 ⊗ F̃ib2 φi (b1) ≤ εi (b2)

More explicit information can be found in [HK02].
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Crystal Graph of V ⊗ V
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B(ω1)⊗ B(ω1) = B(2ω1)⊕ B(L1 + L2)⊕ B(0)
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Crystal Graph of W
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Figure: Crystal graph of V (2L1) in the representation V ⊗ V
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Decomposing W ⊗W

B(Y[v1, v1]) = B
( )

B(Y[v2, v1]) = B

( )

B(Y[v2, v2]) = B

( )
B(Y[v1̄, v1]) = B

( )
B(Y[v1̄, v2]) = B

( )
B(Y[v1̄, v1̄]) = B(∅).
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Decomposing W ⊗W , cont

B(Y)⊗ B(Y) ∼=B
( )

⊕ B

( )

⊕ B

( )
⊕ B

( )
⊕ B

( )
⊕ B(∅)
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Decomposing W ⊗W , cont

W ⊗W ∼= V (4L1)⊕ V (3L1 + L2)⊕ V (2L1 + 2L2)

⊕ V (2L1)⊕ V (L1 + L2)⊕ V (0)

The tensor product rule for Young tableaux can be found explicitly
in [HK02].
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Weight Space Decomposition of W ⊗W

W ⊗W can be expressed as a direct sum of weight spaces:

W ⊗W =
⊕
i ,j ,k

W ⊗W [i , j , k]

Where (i , j , k) range over all (i , j , k) with |i |+ |j |+ |k | = 0, 2, or 4.

Any matrix in W ⊗W (as a representation of Uq(so6)) can be
written as a direct sum of 85 blocks with sizes equal to the
dimension of the corresponding weight space.
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Weight Space Dimensions of V

The dimension of a weight space can also be determined by crystal
graphs.

L1 L2

L3

−L3

−L2 −L1
1

2

3

2

3
1

Figure: Weights in the Crystal Graph of V

Eva Engel, Connor Panish, Lillian Stolberg, Erik Brodsky Texas A&M REU 2024 advised by Professor Jeffrey Kuan

Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases



Probability Presentation Algebra Presentation References

What we’ve been up to

Weight Space Dimensions of Tensor Products

Let g be a Lie algebra, and V1 and V2 be two representations of
Uq(g). Then for any two basis vectors v1 ∈ V1, v2 ∈ V2 with
respective weights λ1 and λ2, the basis vector v1 ⊗ v2 ∈ V1 ⊗ V2

has weight λ1 + λ2. Thus, we can use crystal graphs to determine
the weights of W from the weights of V , and the weights of
W ⊗W from the weights of W .
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Weight Spaces of W
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Figure: Weights in the crystal graph of W
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Weight Spaces of W ⊗W

Every weight space of W ⊗W has a weight taking one of the
following forms:

0

Li ± Lj

2Li

2Li ± Lj ± Lk

2Li ± 2Lj

3Li ± Lj

4Li
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Example: Dimension of weight space with weight

2L1 + L2 + L3

We count the number of pairs (w1,w2) of basis vectors in the
crystal graph of W such that the sum of their respective weights
λ1 and λ2 takes the form

λ1 + λ2 = 2L1 + L2 + L3

By inspecting the weights of W , we can conclude that there are
exactly four possible pairs (w1,w2):

1 w1 = e1⊗ e2, w2 = e1⊗ e3. Then λ1 = L1+ L2, λ2 = L1+ L3.
2 w1 = e1⊗ e3, w2 = e1⊗ e2. Then λ1 = L1+ L3, λ2 = L1+ L2.
3 w1 = e1 ⊗ e1, w2 = e2 ⊗ e3. Then λ1 = 2L1, λ2 = L2 + L3.
4 w1 = e2 ⊗ e3, w2 = e1 ⊗ e1. Then λ1 = L2 + L3, λ2 = 2L1.

Note that e2 ⊗ e1, e3 ⊗ e1, and e3 ⊗ e2 are not in the crystal graph
of W , and thus are not valid possibilities for w1 ⊗ w2.
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Blocking πW⊗W (C )

Similar combinatorial arguments for the remaining types of weight
spaces yield the following block decomposition for any element of
Uq(so6) represented in W ⊗W . In particular, πW⊗W (C ) can be
written as a direct sum of

one 22× 22 block

twelve 12× 12 blocks

six 8× 8 blocks

twenty-four 4× 4 blocks

twelve 3× 3 blocks

twenty-four 2× 2 blocks

and six 1× 1 blocks.
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Ground State Transformation

A ground state transformation of a Hamiltonian matrix H is a
transformation yielding a matrix whose rums sum to 0:

H 7→ a−1(G−1HG )− Id

Where G is a diagonal matrix and a is the eigenvalue of H
associated with the highest weight vector of the irreducible
representation H lives in.

Since the matrix a−1(G−1HG )− Id has rows summing to 0, it
generates a Markov process.
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Generating G

The following is true for type A Lie algebras:

For any basis vector ei ⊗ ej ∈ W ⊗W , there exists a unique
product P = F η1

1 F η2
2 · · ·F ηk

k of generators F1,F2, . . . ,Fk in any
order such that

(ei ⊗ ej)
TP(e1 ⊗ e1) ̸= 0

If we try to extend this to our specific case of so6 (which, notably,
is a type D Lie algebra), we have k = 3.

Eva Engel, Connor Panish, Lillian Stolberg, Erik Brodsky Texas A&M REU 2024 advised by Professor Jeffrey Kuan

Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases



Probability Presentation Algebra Presentation References

What we’ve been up to

Applying the Type A method

The Type A method only works for some basis vectors of W ⊗W .
When it does work, we set the corresponding diagonal entry of G
to the nonzero value produced:

(ei ⊗ ej)
TP(e1 ⊗ e1) ̸= 0

g20i+j−20 := (ei ⊗ ej)
TP(e1 ⊗ e1)
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Transforming States Groundly: Eigenvalue Equations 1

a−1(G−1HG )− Id = L

G−1HG − aId = aL

G−1HG = aL+ aId

HG = aGL+ aG

Since the rows of L sum to 0 and G is diagonal, the rows of GL
sum to 0 as well. Therefore, the equation above implies that the
sum of each row of HG equals the sum of the corresponding row of
aG .

Eva Engel, Connor Panish, Lillian Stolberg, Erik Brodsky Texas A&M REU 2024 advised by Professor Jeffrey Kuan

Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases



Probability Presentation Algebra Presentation References

What we’ve been up to

Transforming States Groundly: Eigenvalue Equations 2

Let gi denote the ith diagonal entry of G . Then G takes the form

G =


g1

g2
. . .

g400


Thus, we can express the sum of the elements in the ith row of HG
as
∑400

j=1Hi ,jgj , and the sum of the elements in the ith row of aG
as agi (since G is diagonal, there is one nonzero term in each row).
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Transforming State Groundly: Eigenvalue Equations 3

400∑
j=1

H1,jgj = ag1 · · ·
400∑
j=1

H400,jgj = ag400

Thus, the vector

⇀g :=


g1
g2
...

g400


satisfies H⇀g = a⇀g .
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Partial Type A Ground State Transformation

The process of finding G (as defined for type A Lie algebras)
uniquely defines a partial ground state transformation of
H = πW⊗W (C ). Solving the system of eigenvalue equations
described above produces a solution space with 37 unknowns.
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Extending to a Ground State Transformation

Setting each of these unknowns to zero and discarding
rows/columns in the resulting matrix a−1G−1πW⊗W (C )G − Id
which are all zero or have negative off-diagonal entries results in a
Markov process generator.

This matrix is a direct sum of blocks which have a similar structure
as the probability group’s Markov process generator, but different
entries.
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Difference with Probability

A ground state transformation of πW⊗W (C ) could never result in a
4× 4 block matching the block corresponding to the
communicating class(

⟨3, 0⟩, ⟨1, 2⟩, ⟨2, 1⟩, ⟨0, 3⟩
)

in the probabilistically-generated Markov generator.
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