"The Cross-Over and Patch Algorithms for Wavelet Sets in R²"

by

A.J. Hergenroeder, Zach Catlin and Brandon George

Abstract: We have two algorithms to generate classes of wavelet sets in R^2: The crossover algorithm and the patch algorithm.

Using any partition of the inner square, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, into four pieces $X_{\oplus}, X_{\Theta}, Y_{\oplus}, Y_{\Theta} \subseteq \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that X_{\oplus} is in the right half-inner square, X_{Θ} is in the left half-inner square, Y_{\oplus} is in the upper half-inner square and Y_{Θ} is in the lower half-inner square, our crossover algorithm generates a wavelet set in \mathbb{R}^2 . We have results for the patch wavelet model as well.