
The Effect of Tropical Cyclone Characteristics on U.S.
Landfall Probability

Julie Lederer
July 28, 2008

Abstract

When a tropical cyclone threatens the coastline, decision makers can take prepara-
tory actions designed to mitigate the damage caused by landfall. Those in this situ-
ation must decide whether and when to begin their preparations. Regnier and Harr
have developed a dynamic decision model in which the decision maker has the option
of delaying preparation and waiting for an updated, more accurate forecast. Regnier
and Harr combine their decision model with a Markov model of tropical cyclone motion
derived from fifty-three years of Atlantic hurricane data. We examine the state space
Ω used in the Markov model with the goal of including additional state variables for
storm characteristics such as direction of travel and wind speed. Logistic regression
analysis is used to examine characteristics that had a statistically significant effect on
landfall probability for Atlantic tropical cyclones between 1950 and 2007. The revised
state space developed here will improve the Markov model, enabling Regnier and Harr’s
dynamic decision model to provide decision makers with more valuable information.
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1 Introduction

Tropical cyclones are low pressure systems made of clusters of rotating thunderstorms.
These storms form in tropical and subtropical regions, usually between 5◦ and 20◦ of the
equator [1]. Tropical cyclones in the Atlantic and Eastern Pacific are labled as tropical
depressions, tropical storms, or hurricanes based on maximum sustained wind speed.1 A
tropical storm becomes a hurricane when its wind speeds reach 74 mph (64 knots).

Tropical cyclones that make landfall bring high winds and heavy rain and can spawn
tornados. Even locations 100 miles or more from the place of landfall can experience massive
flooding. Advanced preparation, such as moving ships from a harbor or shuttering windows,
can mitigate some of these dangers. But preparation is costly and often requires a certain
amount of lead time in order to be effective. One oft-cited study lists the cost of civilian
evacuations as $1M per mile of coastline [2]. One way to reduce the cost of preparation is to
develop more accurate forecasts that give threatened locations greater time to prepare. A
second tactic is to optimize the decision-making process of those who must decide whether
and when to begin preparatory actions. This second approach is the one Regnier and Harr
adopt in “A dynamic decision model applied to hurricane landfall” (2006) [3].

Regnier and Harr (hereafter referred to as RH) use a Markov model of cyclone motion
in tandem with a dynamic decision model. They believe their decision model can lead to
a reduction in cost for decision makers with assets at a location that is threatened by an
impending cyclone. By considering the value of waiting for an updated forecast, instead
of beginning preparatory actions immediately, the decision maker can avoid making costly
preparations that later turn out to be unnecessary.

In this paper, we refine the state space used in the Markov model of cyclone motion.
By analyzing historical data from the National Oceanic and Atmospheric Administration
and examining tropical cyclone observations from 1950 through 2007, we identify storm
features that affected the probability a tropical cyclone would make landfall in the U.S.
Logistic regression analysis is used to determine which characteristics in which regions of
the Atlantic Ocean had a statistically significant effect on whether or not a cyclone struck
the coastline. Combining the results of these analyses enables us to formulate a revised
Markov state space that includes such variables as direction, wind speed, and speed of
forward motion. Considering a smaller region of the Atlantic while adding additional state
variables enhances the Markov state space without significantly increasing the complexity
of performing simulations with the Markov model. An improved model of cyclone motion
can lead to better decision making when combined with the RH dynamic decision model.

2 Review of Regnier and Harr

2.1 The Dynamic Decision Model

Traditional decision models describe the hurricane preparation scenario as a series of static
decisions. At each decision point, a decision maker with assets at a threatened target
location chooses whether or not to prepare based on the instantaneous probability that the
hurricane will strike the target. Regnier and Harr (RH) devise a dynamic decision model
which purportedly leads to a reduction in the expected cost of a hurricane strike.

1The maximum sustained wind speed is defined by the National Weather Service as the highest one-
minute surface winds occurring within the circulation of the system at a height of 10 m.
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In the RH dynamic decision model, the decision maker decides at each decision point to
begin preparations immediately or wait for an updated, more accurate forecast. The choice
at each decision point is now “prepare or wait,” as opposed to “prepare or do not prepare”
with the static decision model. RH combine their dynamic decision model with a stochastic
model of cyclone motion derived from historical Atlantic cyclone tracks. This cyclone model
provides an indication of how the uncertainty of the forecast and the instantaneous strike
probability at a particular target will evolve as the lead time declines.

RH believe that decision makers using their dynamic decision model, in tandem with the
cyclone motion model, can avoid undertaking irreversible preparations that later turn out
to be unnecessary. Testing their model with cyclones that hit Norfolk, VA, and Galveston,
TX, RH calculate that the expected cost of the cyclone strikes is less when the dynamic,
rather than static, decision model is used.

2.2 Markov Model of Tropical Cyclone Motion

2.2.1 Stochastic Modeling

First-order Markov chain models describe stochastic processes in which the state of a system
at time t+ 1 depends only upon its state at time t, and not on its state at any time before
t [4].

More formally, let St be a random variable that describes the state of some process at
time t. For t = 1, 2, . . . and for each possible sequence of states s1, s2, . . . , st+1, then

Pr(St+1 = st+1

∣∣∣S1 = s1, S2 = s2, . . . , St = st) = Pr(St+1 = st+1

∣∣∣St = st) (1)

RH use a first-order Markov chain model to describe cyclone motion. In this model,
information on how the cyclone reached its present state (i.e., its historical evolution through
time) has no bearing on the probabilities of transitioning to future states. Two cyclones in
state g have the same probability of moving to state h in the next time period, regardless
of how each reached state g.

In the Markov model, the state of a cyclone is given by the location of its center.
This location is defined as the 1◦ latitude ×1◦ longitude cell within the region 0◦ − 70◦N
and 0◦ − 100◦W that contains the center of the storm. Within the region 10◦ − 25◦N
and 55◦ − 80◦W (hereafter, Region RH), the state of a cyclone also includes its dominant
direction of motion, since direction changes in this area have a critical influence on the
potential landfall location. Region RH is outlined in Figure 1.

The direction of motion is defined as “north,” “west,” or “other” and is calculated
through observing the change in position that occurs between discrete 6-hour time steps.
Figure 2 shows the cutoffs between the three directions.

Of the 7750 possible states (70 × 100 position cells + 2 additional directions within
Region RH ×375 position cells in Region RH), only 3333 states were observed in the 538
Atlantic tropical cyclones that occurred between 1950 and 2002 — the set of storms RH
used to make their model. RH added the state j = 0, denoting the termination of a cyclone,
to the 3333 observed states to get a Markov state space Ω containing 3334 states.

The Markov chain model of cyclone motion is a discrete-time model because the state
of the hurricane is observed only at discrete points in time, and not continuously in time.
The discrete time interval used is 6 hours because the information provided in HURDAT,
the National Hurricane Center’s historical database, is given in 6-hour time steps.
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Figure 1: Map with Region RH outlined in black. Adapted from
http://www.eduplace.com/ss/maps/pdf/americas.pdf.

Figure 2: Depiction of the directions classified as “north,” “west,” and “other” in the
Markov model of tropical cyclone motion. From Regnier and Harr, 2006.
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In addition to being discrete-time, the Markov model employed by RH is also finite.
That is, there are a finite number of possible states.

2.3 Transition Probabilities

Transitions between states are described by the changes in the location of the storm’s center
and, for storms within Region RH (10◦ − 25◦N and 55◦ − 80◦W), changes in the direction
of motion. The transition probability qjk is the probability that the cyclone is in state k at
time t+ 1, given that its state at time t is j. That is,

qjk = Pr(st+1 = k
∣∣∣st = j) (2)

Each transition probability qjk was calculated using the historical HURDAT database as
the fraction of storms in state j that moved into state k from one 6-hour time interval to
the next. The total number of transition probabilities is 33342, but only 9445 are nonzero,
as cyclones rarely change location significantly in one 6-hour time step.

The transition probabilities can be arranged in a 3334 × 3334 square matrix Q, called
the transition probability matrix of the Markov chain. The jkth entry of Q is qjk for
j = 0, 1, . . . , 3334 and k = 0, 1, . . . , 3334. That is,

Q =


q0,0 q0,1 · · · q0,3334

q1,0 q1,1
...

...
. . .

...
q3334,0 · · · q3334,3334

 (3)

The matrix Q is a stochastic matrix because all of its entries are nonnegative and each
of its rows sums to 1. That is, qjk ≥ 0 for all states j and k and

∑3334
k=0 qjk = 1 for

j = 0, 1, . . . , 3334, since a hurricane in state j must move to some state k in the state space
Ω during the next 6-hour time step.

The transition probabilities qjk are derived solely from the historical cyclone tracks
recorded in the HURDAT database for storms occurring between 1950 and 2002. Therefore,
this stochastic model does not have the forecast accuracy of the National Hurricane Center
prediction models.

2.4 Instantaneous Strike Probabilities

A cyclone is considered to strike a particular target if its center moves through the 1◦ latitude
×1◦ longitude cell containing the target or any of the six 1◦ × 1◦ cells to the immediate
north, south, east, west, southeast, or southwest of the target (see Figure 3).

The number of cells within the strike zone ranges from 7 (if the target cell and the
six other cells of interest are outside Region RH) to 7 × 3 = 21 (if the target cell and the
six other cells of interest are all within Region RH where direction of travel is also a state
variable). The set of states in the strike zone is denoted κ.

For each state j ∈ Ω (the state space), the instantaneous strike probability for a par-
ticular target, denoted pj , is the probability that a cyclone passing through state j will
eventually hit the strike zone. The value of pj is calculated as the solution to the set of
simultaneous equations: pj = 1 ∀j ∈ κ

pj =
∑
k∈Ω

qjkpk ∀j ∈ Ω\κ (4)
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Figure 3: The middle square with the bull’s eye and the six surrounding shaded cells make
up the strike zone.

The first of equations 4 says that for all states j in the strike zone κ, the probability that
a cyclone in state j will hit the strike zone is 1. The second equation indicates that the
probability that a cyclone passing through state j (where j is not in the target’s strike zone)
will strike the target depends on the transition probabilities from j to all other states k and
the instantaneous strike probabilities pk.

2.5 Modeling Tropical Cyclone Preparations

2.5.1 The Alternatives

In the RH model, the decision maker with assets at the threatened target location has one
type of preparatory action, denoted as a, available to him. For example, a fleet commander
at the naval base in Norfolk, VA, has the option of ordering a sortie of ships from port. At
each decision point, the decision maker may choose to take action (in which case a = 1) or
to delay action and wait for an updated forecast (in which case a = 0).

2.5.2 Preparation Cost Profile

RH define τ as the minimum possible remaining time before a cyclone strikes a target. The
lead time τj is calculated as 6 hours times the minimum number of forward transitions (with
nonzero probabilities) necessary for a storm in state j to strike the target [5]. The cost of
preparation, C, is a function of the remaining lead time, τ . The critical lead time, τcrit, is
the lead time required to complete a certain preparation before the arrival of the storm at
the target location; the critical lead time is different for different preparatory actions.

RH normalize costs and losses and define L = 1 as the maximum mitigable loss, that is,
the fraction of mitigable damage caused when a cyclone strikes an unprepared target. The
cost function C(τ) increases from C = Ccrit (the cost of undertaking the preparatory action
at or before the critical lead time τcrit) and approaches L = 1 as τ decreases to zero. The
decision maker can still make preparations even if the critical lead time has already passed
(if τ ≤ τcrit), but these actions will probably be more costly and less effective. Here, the
cost of preparation is assumed to be constant and at its minimum at all times at and before
τcrit. The equation C(τ = 0) = L shows that the maximum mitigable loss is incurred if the
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decision maker made no advanced preparations and the cyclone strikes the target. C = 0 if
no action is taken and the cyclone does not strike the target. The cost function is specific
to the decision maker and to the preparatory action under consideration.

RH chose 0.1 as the cost:loss ratio at C = Ccrit. That is,

Ccrit/L = Ccrit/1 = Ccrit = 0.1 at and before τ = τcrit. (5)

The decision maker’s goal is to minimize the expected cost of the cyclone, which depends
on the cyclone’s track and the preparation actions undertaken.

2.6 The Forecast

Track forecasts determine the instantaneous strike probabilities, pj for j ∈ Ω, which are
used in the Markov model of cyclone motion and in both the static and the dynamic
decision models. Though the track forecasts themselves are not included as parameters in
the dynamic decision model, this model takes into account the value of waiting for updated
forecasts.

2.7 Dynamic Decision Making with the Markov Model

RH define a policy π as a description of the action a decision maker will take in any
possible state j of the Markov cyclone model. In state j, the decision maker will choose
action aj = πj ∈ {0, 1}, where aj = 0 if no action is taken and aj = 1 if action is taken.
In both the static decision model and the RH dynamic decision model, the decision maker
has only one type of preparatory action available to him, such as boarding up windows or
ordering an evacuation.

In the static decision model, with a cyclone in state j, the decision maker follows the
static policy πs and will prepare if and only if C(τj) ≤ pjL for τj ≤ τcrit, where C(τj) is
the cost of the preparatory action and pjL is the expected mitigable loss if no action is
taken and the cyclone strikes the target. Starting at time τcrit, the decision maker applies
this static policy rule at each decision point. The policy πs is considered static because
this decision rule does not take into account how the instantaneous strike probabilities will
evolve as updated forecasts become available.

The dynamic policy is denoted πD and illustrates that, in certain situations, a decision
maker can benefit by delaying action until more accurate forecasts are released.

Each state j in the Markov cyclone model is assigned a value, Vj , which quantifies the
expected total cost to the decision maker of a cyclone in state j. The decision maker’s goal,
of course, is to minimize Vj . Vj is defined in the following way:

Vj = 1 for all j ∈ κ, where κ is the set of states in the strike zone. (6)

Vj = C(τj) for all j ∈ Ω\κ and aj = πD(j) = 1. (7)

Vj =
∑
k∈Ω

qjkVk for all j ∈ Ω\κ and aj = πD(j) = 0. (8)

Statement 6 says that if a cyclone reaches the strike zone without any preparations
being undertaken, then the decision maker incurs the maximum mitigable loss.2 Statement
7 says that if the preparation is undertaken, the value associated with state j is the cost

2Recall that L = 1 is the normalized maximum mitigable loss.
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of preparation. Statement 8 says that if the decision maker chooses to delay preparation,
the value associated with state j is the expected total cost associated with the state of the
cyclone at the next decision point.

A decision maker following the dynamic decision model will prepare if the cost of prepa-
ration associated with a cyclone in state j, C(τj), is less than or equal to

∑
k∈Ω qjkVk for

τj ≤ τcrit. Otherwise, the decision maker will delay taking action and reevaluate at the next
decision point.

2.8 Expected Total Cost

RH compare the expected total cost of a cyclone to a decision maker under both the static
decision model and the dynamic decision model. For each of two targets – one at Norfolk,
VA and one in Galveston, TX – they vary the critical lead time τcrit from 120 hours to 6
hours and test both a linear and exponential cost function.3 The savings gained from using
the dynamic instead of static model range from 0% to 6% for Norfolk and 0% to 8% for
Galveston, depending on τcrit and the cost function used. The savings are highest when
the critical lead time is between 24 and 60 hours. In this window, updated forecasts often
bring valuable information, so decision makers can benefit by delaying action for 6 to 12
hours and waiting for more accurate forecasts. Improving the decision making process may
be less costly than reducing the critical lead time for a preparatory action.

2.9 Monte Carlo Simulation

The RH dynamic decision model can help prevent costly false alarm preparations when a
decision maker delays action and an updated forecast shows preparation to be unnecessary.
This situation might occur if a cyclone that appears to be heading for the coastline later
recurves and begins moving out to sea. However, if the updated forecast shows a cyclone
strike to be more likely, the decision maker must now undertake expedited, more costly
preparations and faces the risk that the necessary actions might not be completed before
the target is hit.

In order to study whether the net benefit of the dynamic model over the static model is
positive or negative, RH use Monte Carlo simulation to generate 10,000 storm tracks using
their Markov cyclone model. They find that using the dynamic over the static decision
model for simulated cyclones decreases the total expected cost. False alarms are reduced
by about 25%, but the number of delayed preparatory actions and strikes on unprepared
targets increases slightly.

2.10 Real-time Decision Making

RH name several problems with using their dynamic decision model:

• The decision model must be adapted to the individual decision maker’s cost function
and the preparatory action under consideration.

• The stochastic Markov model of cyclone movement, necessary for dynamic optimiza-
tion in the RH decision model, is based purely on the historical cyclone tracks as
recorded in the HURDAT database. Therefore, this model does not have the forecast
accuracy of the National Hurricane Center prediction models.

3Recall that if a certain preparatory action’s critical lead time is 120 hours, this means that 120 hours
are required to complete the preparation before the arrival of the storm at the target location.
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2.11 Possible Extensions

RH mention several possibilities for further research:

• Repeat the analysis for typhoons in the North Pacific.

• Expand the model to include preparatory actions that can occur in stages.

• Expand the state space of the Markov model of cyclone motion by including additional
atmospheric parameters, such as wind speed.

3 Extending the Work of Regnier and Harr

3.1 Examining the Markov State Space

As mentioned in the previous section, RH list the expansion of the Markov state space as a
possible extension to their research. Our objective was to refine the state space and thereby
improve the quality of the Markov model.

However, adding state variables to the state space quickly leads to increasing complexity.
For instance, enlarging the size of the state space from n to n+ 1 increases the size of the
transition matrix Q by (n+ 1)2 − n2 = 2n+ 1. This makes it prudent to be systematic in
the determination of which factors − such as wind speed and pressure − to include in the
state space. If the value of a particular characteristic in a particular region of the Atlantic
affected the probability a tropical cyclone in that region with that value would eventually
make landfall in the U.S., we wanted to add this characteristic in this region to the state
space. If not, we would disregard this characteristic in this region in order to keep the
model from growing unwieldy.

For example, if it was found that cyclones traveling west in the region 20◦ − 25◦N and
60◦− 65◦W were significantly more likely to make landfall than cyclones traveling north or
otherwise in this region, then direction of travel in 20◦ − 25◦N and 60◦ − 65◦W would be
added as a state variable to the state space Ω. Logistic regression was used to perform this
analysis.

3.2 Methodology

3.2.1 Logistic Regression

Logistic regression is used to predict the probability an event will occur given the values of
one or more predictor variables. The response, or dependent, variable equals 0 if the event
does not occur and 1 if the event occurs. The predictor, or independent, variables may be
quantitative (numerical) or qualitative (categorical).

The logistic curve P gives the probability the response variable equals 1 (the event
occurs) given the values of the n predictor variables:

P =
eb0+b1x1+...+bnxn

1 + eb0+b1x1+...+bnxn
(9)

The numbers b0, b1, . . . , bn are the regression coefficients and indicate the relationship be-
tween the predictor variables and the probability the response variable equals 1. For exam-
ple, if bi is positive for some i between 1 and n, then an increase in the value of xi increases
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the probability the event in question will occur. Note that the value of P is between 0 and
1, since P represents a probability.

In this study, landfall was used as the response variable, with landfall equaling 1 if the
tropical cyclone made landfall in the U.S. and 0 otherwise. The effect of various predictor
variables in different regions on the probability of landfall was examined. The objective was
to determine which of the following factors affected the probability of landfall at the 0.05
level of significance:

• Direction of travel

• Wind speed

• Speed of forward motion

• Climatological year type (El Niño or La Niña)

• Month of origination

The statistical software package STATA was used to carry out the logistic regression
analysis.

3.2.2 HURDAT Database

The HURDAT dataset, provided by the National Oceanic and Atmospheric Administration,
was used in this analysis. Recall that this database provides observations in 6-hour time
intervals; each observation gives information on the storm’s position and intensity. Only
tropical cyclones that occurred between 1950 and 2007 were considered. Reconnaisance air-
craft, radar, and satellite technology were not widely used before 1950, making observations
of earlier cyclones less reliable.

Furthermore, properly addressing the question Did characteristic X in region Y have
a statistically significant effect on whether or not a tropical cyclone made landfall in the
U.S.? required the post-landfall observations to be disregarded. To do this, 27 points along
the coastline from Veracruz, Mexico, to Cape Cod, Massachusetts, were connected using
26 line segments (see Figure 4). For each observation t of a particular cyclone, a vector
connecting the cyclone’s position at time t−1 to its position at time t was formed. Landfall
was said to occur if the position vector intersected any of the 26 coastal line segments. All
of a cyclone’s post-landfall observations were eliminated from the analysis.

4 Results of Logistic Regression Analysis

4.1 Direction of Travel

For each observation between 1950 and 2007, the landfall response variable was assigned to
equal 1 if the cyclone eventually made landfall in the U.S. and 0 otherwise. Each observation
was also assigned a direction of travel. The direction of travel at time t for a particular
cyclone was calculated using the change in the cyclone’s position from time t − 1 to time
t. The direction of travel at time t = 1 for each cyclone (that is, at the time of the first
observation) was assigned to be the same as the direction of travel at time t = 2. The same
cutoffs between north, west, and other used by RH were used in this study. The histogram
in Figure 5 shows the relative frequencies of each direction.
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Figure 4: Map showing the 26 coastal line segments used
to eliminate the post-landfall observations. Adapted from
http://www.worldatlas.com/webimage/countrys/namerica/naoutl.htm.

Figure 5: Histogram showing the relative frequencies of “north,” “west,” and “other” ob-
servations in pre-landfalling cyclones from 1950 to 2007.
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Region RH RH included direction of travel as a state variable for tropical cyclones
within the region 10◦ − 25◦N and 55◦ − 80◦W (Region RH). Logistic regression was used
to determine whether a cyclone’s direction of travel within Region RH had a statistically
significant effect on whether or not the cyclone made landfall in the U.S. The independent
variables “north, “west,” and “other” were treated as categorical variables that, for each
observation, equaled 1 if true and 0 otherwise. For example, if a cyclone that eventually
made landfall in the U.S. was moving northward during a particular observation, then north
= 1, west = 0, other = 0, and landfall = 1 for this observation.

The results of the regression analysis are shown in Figure 6. Cyclones traveling west in
Region RH were significantly more likely to make landfall in the U.S. than cyclones moving
northwards or otherwise, all else equal.

#N Pr(L | N) #W Pr(L |W ) #O Pr(L | O)
583 0.178 2316 0.288 186 0.081

Figure 6: Chart displaying the number of observations and the landfall probabilities for the
three possible directions of travel − north (N), west (W), and other (O). “#N” represents
the number of “north” observations in Region RH between 1950 and 2007. “Pr(L | N)” is
the probability a cyclone traveling north in Region RH made landfall in the U.S.

5◦ by 5◦ Regions in 0◦ − 70◦N and 0◦ − 100◦W Next, the region from 0◦ − 70◦N and
0◦ − 100◦W was divided into 280 5◦ by 5◦ regions. Logistic regression was performed in
each of these regions. Figure 7 illustrates the results of this analysis.

The shaded boxes represent regions in which direction of travel had a significant effect
on the probability of landfall in the U.S. The color of the shading denotes the direction(s)
of travel that was associated with a higher probability of landfall. For example, cyclones
traveling north in the area bounded by 20◦N, 25◦N, 90◦W, and 95◦W were significantly
more likely to make landfall in the U.S. than cyclones moving westward or otherwise in this
region, all else equal. The area bounded by 20◦N, 25◦N, 80◦W, and 85◦W is shaded purple
to show that cyclones in this region moving north or west were more likely to make landfall
than cyclones traveling in the direction called “other,” all else equal. The results provide
support for including the direction of travel within these regions in the Markov state space.

Region RH consists of 15 5◦ by 5◦ cells, while our analysis identified 19 such cells,
including 5 in Region RH, in which direction of travel was significant.

4.2 Wind Speed

As mentioned previously, a cyclone’s maximum sustained wind speed is defined as the
highest one-minute surface winds occurring within the circulation of the system at a height of
10 m. For each observation between 1950 and 2007, the cyclone’s wind speed was categorized
as “depression-force” (wind speed < 33 kts), “storm-force” (33 kts ≤ wind speed < 64 kts),
or “hurricane-force” (wind speed ≥ 64 kts). Figure 8 shows the relative frequencies of wind
speed observations categorized as depression-force, storm-force, and hurricane-force.

Logistic regressions were performed in the same 280 5◦ by 5◦ regions used in the direction
analysis. The results are depicted in Figure 9.

Wind speed had a significant effect on the probability of landfall in the shaded regions.
For example, the red shading in the cell bounded by 25◦N, 30◦N, 65◦W, and 70◦W illustrates
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Figure 7: Map displaying the direction of travel associated with a higher probability of U.S.
landfall.

Figure 8: Histogram showing the relative frequencies of tropical depression-, tropical storm-,
and hurricane-force winds in pre-landfalling cyclones from 1950 to 2007.
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Figure 9: Map displaying the wind speed associated with a higher probability of U.S.
landfall.

that a hurricane-force storm in this region was more likely to make landfall in the U.S. than
a cyclone with lesser wind speed, all else equal.

4.3 Speed of Forward Motion

While wind speed measures the wind within the circulation of the storm system, the speed
of forward motion considers the motion of the system itself. The speed of forward motion
in kilometers per hour at time t for a particular cyclone was calculated by dividing the
change in km in the cyclone’s position from time t − 1 to time t by the length of time
between observations (6 hrs). The speed at time t = 1 for each cyclone (that is, at the
time of the first observation) was assigned to be the same as the speed at time t = 2. Care
was taken when converting the change in longitude from degrees to km, since the length of
1◦ longitude varies depending on the latitude. The formula 1◦ longitude = cos(latitude)×
111.325 km was used in these calculations [6].4

The histogram in Figure 10 shows the frequencies of cyclone speeds.
The speed of forward motion for each observation was categorized as “slow” (speed ≤

15 km per hr), “medium” (15 kph < speed ≤ 30 kph), or “fast” (speed > 30 kph). These
cutoffs were selected because 15 kph and 30 kph approximate the 25th and 75th percentiles,
respectively, of cyclone speeds between 1950 and 2007.

4The length of 1◦ latitude also varies from the equator to the poles, but only by 1.13 km. Therefore, the
standard value of 111.325 km was used here.
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Figure 10: Histogram showing the distribution of pre-landfalling cyclone speeds between
1950 and 2007.

Logistic regressions were run in each of the 280 5◦ by 5◦ regions to examine the rela-
tionship between forward speed and landfall probability. Figure 11 illustrates the results.
In the shaded regions, a cyclone’s speed of forward motion had a statistically significant
effect on whether or not the cyclone eventually made landfall in the U.S. For example, the
orange shading in the region bounded by 15◦N, 20◦N, 50◦W, and 55◦W shows that a trop-
ical cyclone moving at a speed greater than 15 kph in this region was more likely to make
landfall than one moving at a slower speed, all else equal.

4.4 Climatological Year Type

El Niño and La Niña episodes refer to an abnormal warming or cooling, respectively, of
ocean surface temperatures in the eastern equatorial Pacific [7]. El Niño episodes are
usually associated with an increased frequency of tropical cyclones in the Pacific Ocean
and a decrease in Atlantic hurricane activity. La Niña events produce opposite effects, and
tropical cyclone activity in the Atlantic is thought to increase during La Niña years [8]. The
chart in Figure 12 shows the years between 1950 and 2007 that were categorized as either
El Niño or La Niña years. Years that do not appear in the chart exhibited neutral weather
conditions.

Logistic regression was performed to determined whether the year classification − El
Niño, La Niña, or neither − had a statistically significant effect on whether or not a tropical
cyclone made landfall in the U.S. This analysis suggests that, all else being equal, the year
type did not have a significant effect on landfall. That is not to deny, of course, that the
year classification had an effect on storm activity in the Atlantic. There were an average of
9 cyclones per season during El Niño years and 11 during La Niña years.
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Figure 11: Map displaying the speeds associated with a higher probability of U.S. landfall.

El Niño La Niña
1951 1982 1950 1974
1957 1986 1954 1975
1963 1987 1955 1983
1965 1991 1956 1984
1968 1994 1961 1988
1969 1997 1964 1995
1972 2002 1967 1998
1976 2004 1971 1999
1977 2006 1973 2000

Figure 12: El Niño and La Niña years between 1950 and 2007.
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4.5 Month of Origination

The Atlantic hurricane season officially begins on June 1 and ends on November 30. The
histogram in Figure 13 shows the relative frequency of different months of origination for
tropical cyclones that occurred between 1950 and 2007.

Figure 13: Histogram showing relative frequencies by month of origination.

The majority of tropical cyclones (77%) originated in August, September, or October.
Seventy-three out of 92 landfalling cyclones (79%) formed in one of these three months.

In this study, the months of the year were divided into three categories: “early” (January
through July), “middle” (August through October), and “late” (November and December).
Each tropical cyclone was assigned to a category, and logistic regression analysis was used
to study the relationship between the time of origination and the probability of landfall in
the U.S. The regression results suggest that the time of year did not have a statistically
significant effect on the probability of landfall. That is, while the frequency of tropical
cyclones during August through October was higher than during other months, a cyclone
that originated in September was not significantly more likely to make landfall than one that
originated in January, assuming that the two cyclones’ other characteristics were identical.

4.6 Refining the Markov State Space

As mentioned previously, enlarging the size of the Markox state space Ω to include additional
state variables increases the complexity of performing the Monte Carlo simulation, especially
when starting with the 7000 1◦ by 1◦ position cells within the region bounded by 0◦N, 70◦N,
0◦W, and 100◦W.

However, the majority of tropical cyclones that made landfall in the U.S. between 1950
and 2007 first passed through the region bounded by 15◦N, 40◦N, 55◦W, and 90◦W (hereafter
referred to as Region X). Furthermore, the northwestern part of Region X lies over the U.S.,
so that a cyclone in this area will have already made landfall. Therefore, two boxes − one
defined by 30◦N, 35◦N, 80◦W, and 90◦W; and the other bounded by 35◦N, 40◦N, 75◦W,
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and 90◦W − can be removed from Region X to give a new area, Region X*. Region X*
contains only 30 5◦ by 5◦ regions, or 750 1◦ by 1◦ position cells. The map in Figure 14
shows Region X*.

Figure 14: The thick black line outlines Region X*. The diagonal hatching
identifies the area that is in Region X but not in Region X*. Adapted from
http://www.eduplace.com/ss/maps/pdf/americas.pdf.

From the perspective of a decision maker in the U.S. who is preparing for a possible
strike, it seems reasonable to disregard locations outside Region X* when considering which
position states to include in Ω. This reduces the region of interest to a smaller box that
still “captures” most of the cyclones that eventually made landfall.

This region analysis and the results of the regressions discussed in Section 4 are depicted
graphically in Figure 15. The graph shows which factors in which areas of Region X* were
found to be significant. The color of the shading indicates the predictor variables that had
a statistically significant influence on the probability of landfall. For example, the black
shading in the region bounded by 25◦N, 30◦N, 65◦W, and 70◦W illustrates that the direction
of travel, wind speed, and speed of forward motion all had a significant effect on whether
or not a cyclone in this area eventually made landfall in the U.S.

These results can be used to identify a revised state space, Ωr, and the size of Ωr can
be determined. In the following discussion, the term “characteristics” refers to direction of
travel, wind speed, and speed of forward motion. Recall that each characteristic can take on
one of three values: “north,” “west,” or “other” for direction of travel; “depression-force,”
“storm-force,” or “hurricane-force” for wind speed; and “slow,” “medium,” or “fast” for
speed of forward motion.

For each of the 7 5◦ by 5◦ boxes in Region X* in which none of the three characteristics
was found to be significant, there are 25 possible states. This is because a cyclone in one
of these boxes could have its center located in any of the 25 1◦ by 1◦ cells.

For each of the 6 5◦ by 5◦ boxes in Region X* in which only one of the three character-
istics was significant, there are 75 possible states (3 possible values of the characteristic in
each of the 25 1◦ by 1◦ cells). Analogous reasoning shows that there are 225 = 3 × 3 × 25
states in each of the 10 5◦ by 5◦ boxes with exactly two characteristics of significance and
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Figure 15: Map displaying the characteristics of significance within Region X*.

675 = 3 × 3 × 3 × 25 states in each of the 7 5◦ by 5◦ boxes with three significant charac-
teristics. Recall that the state space contains 1 cell denoting cyclone termination. Then,
using Region X* and the regression results depicted in Figure 15, the size of the revised
state space Ωr can be calculated as

|Ωr| = (25× 7) + (75× 6) + (225× 10) + (675× 7) + 1 (10)
= 7601

Note that if the full 0◦ − 70◦N and 0◦ − 100◦W region were used and all three charac-
teristics were included as state variables in each of the 7000 1◦ by 1◦ cells, then the state
space would contain 189,001 states (7000× 3× 3× 3 + 1).

4.7 Improved Decision Making with a Revised State Space

The following example illustrates how a decision maker can benefit from a more sophisticated
state space that includes additional state variables. Suppose that two cyclones, A and B,
are in the same 1◦ by 1◦ region bounded by 25◦N, 26◦N, 65◦W, and 66◦W. In the Markov
model used by RH, the state of a cyclone in this region is defined only by position, since
this cell lies outside Region RH, in which direction is included as a state variable. However,
if our revised state space, Ωr, is used, the state of a cyclone in this cell includes its position,
direction of travel, wind speed, and speed of forward motion.
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Suppose that cyclone A is traveling in the “west” or “other” direction, contains hurricane-
force winds, and is moving at less than 30 km per hr. Also suppose that cyclone B is traveling
northwards with depression- or storm-force winds and is moving at a speed greater than
30 km per hr. The results of the logistic regression analysis suggest that storm A is more
likely than storm B to make landfall in the U.S.

However, for a particular target location, the strike probability pj is the same for both
cyclones when using the RH Markov model. This is because both storms are in the same 1◦

by 1◦ cell and therefore are in the same state j. Recall that, for each state j, the dynamic
policy πd specifies the action a decision maker will take when the cyclone is in that state.
Therefore, the optimal action aj must necessarily be equal for both cyclones.

However, when using the revised state space, cyclones A and B are in different states
(call them k and m, respectively). The probability that cyclone A will strike a certain
target location on the U.S. coastline is higher than the probability that cyclone B will
hit this same target. That is, pk > pm. Therefore, perhaps action ak equals one in this
scenario, while action am equals zero, suggesting that a decision maker with assets at the
target location should begin preparations immediately if the cyclone is in state k and wait
for an updated forecast if the cyclone is in state m. The refined Markov state space could
reduce the occurrence of strikes on unprepared targets and also prevent a decision maker
from making costly preparations that later turn out to be unnecessary.

5 Conclusion

In this study, we used logistic regression to identify storm characteristics that affected
the probability a tropical cyclone would strike the U.S. coastline. Three of the five factors
examined − direction of travel, wind speed, and speed of forward motion − were found to be
significant. In formulating a revised state space Ωr for the Markov model of cyclone motion,
we considered a smaller region of the Atlantic and added additional state variables in areas
within the region in which these variables had a significant effect on landfall. Decreasing the
size of the region of interest while including additional state variables keeps the size of the
state space manageable while improving the quality of the Markov model. To extend this
research, we would like to examine additional storm characteristics that could be added as
state variables in the Markov state space. Two features of interest are the central pressure
and the number of observations taken to reach maximum wind speed.

A more sophisticated model of tropical cyclone motion, when coupled with RH’s dynamic
decision model, will allow decision makers to make more informed choices when faced with
an oncoming storm.
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