On Property P_1 and Spaces of Operators

Stephen Rowe

July 27, 2009

Stephen Rowe On Property *P*₁ and Spaces of Operators

イロン イヨン イヨン イヨン

Operator Spaces and Algebras Preannihilators Property P₁ Separating Vectors

Operator Spaces and Algebras

A space of operators in finite dimensions is a set of matrices that is a vector space. That is, it is closed under addition and scalar multiplication.

An algebra of operators is a space of operators that is also closed under multiplication. That is, if X is our space and $a, b \in S$, then $ab \in S$

Preannihilators

Operator Spaces and Algebras Preannihilators Property P₁ Separating Vectors

Let X be a space of operators. The preannihilator, X_{\perp} is the set of all matrices, t, such that $Tr(tx) = 0, \forall x \in X$

イロト イポト イヨト イヨト

Preannihilators

Operator Spaces and Algebras Preannihilators Property P₁ Separating Vectors

Let X be a space of operators. The preannihilator, X_{\perp} is the set of all matrices, t, such that $Tr(tx) = 0, \forall x \in X$ Example: $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$

イロン イヨン イヨン イヨン

Preannihilators

Operator Spaces and Algebras Preannihilators Property P₁ Separating Vectors

Let X be a space of operators. The preannihilator, X_{\perp} is the set of all matrices, t, such that $Tr(tx) = 0, \forall x \in X$ Example: $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$

イロン 不同と 不同と 不同と

Preannihilators

Operator Spaces and Algebras **Preannihilators** Property P_1 Separating Vectors

Let X be a space of operators. The preannihilator, X_{\perp} is the set of all matrices, t, such that $Tr(tx) = 0, \forall x \in X$ Example: $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ $Tr \left(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \right) =$

Preannihilators

Operator Spaces and Algebras Preannihilators Property P_1 Separating Vectors

Let X be a space of operators. The preannihilator, X_{\perp} is the set of all matrices, t, such that $Tr(tx) = 0, \forall x \in X$ Example: $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ $Tr\left(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}\right) = ax_{11} + bx_{21} = 0 \quad \forall a, b$

Preannihilators

Operator Spaces and Algebras Preannihilators Property P_1 Separating Vectors

Let *X* be a space of operators. The preannihilator, X_{\perp} is the set of all matrices, *t*, such that $Tr(tx) = 0, \forall x \in X$ Example: $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ $Tr\left(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}\right) = ax_{11} + bx_{21} = 0 \quad \forall a, b$ $X_{\perp} = \begin{cases} \begin{pmatrix} 0 & x \\ 0 & y \end{pmatrix} \end{cases}$

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Basic Results}\\ \mbox{Maximal}\ \ensuremath{\mathcal{P}_1}\ \mbox{Algebras}\\ \mbox{Open Questions and Further Directions} \end{array}$

Operator Spaces and Algebras Preannihilators **Property** P₁ Separating Vectors

Property P_1

A space of operators, $S \subseteq M_n(\mathbb{C})$, is said to have property P_1 if every element $M_n(\mathbb{C})$ can be written as the sum of an element of the preannihilator and a rank-1 matrix.

$$M_n(\mathbb{C})=S_{\perp}+R_1$$

For any subspace of $M_n(\mathbb{C})$, we can write $M_n(\mathbb{C}) = S_{\perp} + S^*$.

Therefore, to check if S has property P_1 , we only need to check if $S_{\perp} + R_1 = S^*$.

イロン イヨン イヨン イヨン

Operator Spaces and Algebras Preannihilators Property P₁ Separating Vectors

Example

Let
$$S = \left\{ \begin{pmatrix} 0 & a & b & c \\ d & 0 & 0 & 0 \\ e & 0 & 0 & 0 \\ f & 0 & 0 & 0 \end{pmatrix} \right\} = S^* \subset M_4(\mathbb{C})$$

Э

Operator Spaces and Algebras Preannihilators Property P₁ Separating Vectors

Example

Let
$$S = \left\{ \begin{pmatrix} 0 & a & b & c \\ d & 0 & 0 & 0 \\ e & 0 & 0 & 0 \\ f & 0 & 0 & 0 \end{pmatrix} \right\} = S^* \subset M_4(\mathbb{C})$$

 $S_{\perp} = \left\{ \begin{pmatrix} x_{11} & 0 & 0 & 0 \\ 0 & x_{22} & x_{23} & x_{24} \\ 0 & x_{32} & x_{33} & x_{34} \\ 0 & x_{42} & x_{43} & x_{44} \end{pmatrix} \right\}$
We need to show $S^* = S_{\perp} + R_1$, or alternately given any $t \in S$, there exists a $t_{\perp} \in S_{\perp}$ such that $t + t_{\perp}$ is rank-1 for some .

Э

Operator Spaces and Algebras Preannihilators **Property** P₁ Separating Vectors

Example Continued

$$t + t_{\perp} = \left\{ \begin{pmatrix} x_{11} & a & b & c \\ d & x_{22} & x_{23} & x_{24} \\ e & x_{32} & x_{33} & x_{34} \\ f & x_{42} & x_{43} & x_{44} \end{pmatrix} \right\}$$

・ロン ・回と ・ヨン ・ヨン

э

Introduction	Operator Spaces and Algebras
Basic Results	Preannihilators
Maximal P ₁ Algebras	Property P ₁
Open Questions and Further Directions	Separating Vectors

Let $S \subseteq B(H)$. A vector $x \in H$ is said to be a separating vector if the map $S \to Sx$ is injective.

向下 イヨト イヨト

Introduction	Operator Spaces and Algebras
Basic Results	Preannihilators
Maximal P ₁ Algebras	Property P ₁
Open Questions and Further Directions	Separating Vectors

Let $S \subseteq B(H)$. A vector $x \in H$ is said to be a separating vector if the map $S \to Sx$ is injective. In other words, x separates S if whenever $Tx = 0, T \in S$, then T = 0.

Introduction	Operator Spaces and Algebras
Basic Results	Preannihilators
Maximal P ₁ Algebras	Property P ₁
Open Questions and Further Directions	Separating Vectors

Let $S \subseteq B(H)$. A vector $x \in H$ is said to be a separating vector if the map $S \to Sx$ is injective. In other words, x separates S if whenever $Tx = 0, T \in S$, then T = 0. Example: $\begin{pmatrix} a & 0 & b \\ 0 & b & c \\ 0 & 0 & c \end{pmatrix}$

Introduction	Operator Spaces and Algebras
Basic Results	Preannihilators
Maximal P ₁ Algebras	Property P ₁
Open Questions and Further Directions	Separating Vectors

Let $S \subseteq B(H)$. A vector $x \in H$ is said to be a separating vector if the map $S \to Sx$ is injective. In other words, x separates S if whenever $Tx = 0, T \in S$, then T = 0. Example: $\begin{pmatrix} a & 0 & b \\ 0 & b & c \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Introduction	Operator Spaces and Algebr
Basic Results	Preannihilators
Maximal P ₁ Algebras	Property P ₁
Open Questions and Further Directions	Separating Vectors

Let $S \subseteq B(H)$. A vector $x \in H$ is said to be a separating vector if the map $S \to Sx$ is injective. In other words, x separates S if whenever $Tx = 0, T \in S$, then T = 0. Example: $\begin{pmatrix} a & 0 & b \\ 0 & b & c \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax + bz \\ by + cz \\ cz \end{pmatrix} = 0$

Separating Vectors Properties of P₁ Spaces

Separating Vector Results

Let $S \subseteq M_n(\mathbb{C})$. If S has a separating vector, then S has property P_1 . This provides a quick way of showing a space has P_1 .

・ロト ・回ト ・ヨト ・ヨト

Separating Vectors Properties of P₁ Spaces

Separating Vector Results

Let $S \subseteq M_n(\mathbb{C})$. If S has a separating vector, then S has property P_1 . This provides a quick way of showing a space has P_1 . If dimS > n, then S cannot have a separating vector. Let $A = \bigoplus_{i=1}^{m} A_i$. If each A_i has a separating vector, then A has a separating vector.

Separating Vectors Properties of P₁ Spaces

Spaces Generated by Two Operators

 $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ Does not have a separating vector. However, $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ does have a separating vector. This motivated the following idea:

・ロト ・回ト ・ヨト ・ヨト

Separating Vectors Properties of P₁ Spaces

Spaces Generated by Two Operators

 $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ Does not have a separating vector. However, $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ does have a separating vector. This motivated the following idea: Let $S = span\{A, B\}$, where $A, B \in M_n(\mathbb{C})$. Then either S or S^* has a separating vector.

Separating Vectors Properties of P₁ Spaces

Basic Properties

If a space S has property P_1 and T is a subspace of S, then T also has property P_1 .

イロン 不同と 不同と 不同と

Separating Vectors Properties of P₁ Spaces

Basic Properties

If a space S has property P_1 and T is a subspace of S, then T also has property P_1 .

If S has property P_1 , then so does S^* .

More Properties

Separating Vectors Properties of P₁ Spaces

If $S \subset M_n(\mathbb{C})$ is a space with property P_1 and $a, b \in M_n(\mathbb{C})$ are invertible operators, then the space aSb also has property P_1 . If $A \subset M_n(\mathbb{C})$ is an algebra with property P_1 and $p \in M_n(\mathbb{C})$, then pAp also has property P_1 .

Open Questions and Further More Properties Separating Vectors Properties of P₁ Spaces

If $S \subset M_n(\mathbb{C})$ is a space with property P_1 and $a, b \in M_n(\mathbb{C})$ are invertible operators, then the space aSb also has property P_1 . If $A \subset M_n(\mathbb{C})$ is an algebra with property P_1 and $p \in M_n(\mathbb{C})$, then pAp also has property P_1 . Let $T \in M_n(\mathbb{C})$ and $W(T) = [I, T, T^2, T^3,]$. This space has property P_1 .

Separating Vectors Properties of P₁ Spaces

Maximum Dimension

Let $S \subset M_n(\mathbb{C})$ have property P_1 . Then $dim S \leq 2n - 1$.

・ロット (四) ・ (日) ・ (日)

Separating Vectors Properties of P₁ Spaces

Maximum Dimension

Let $S \subset M_n(\mathbb{C})$ have property P_1 . Then $dimS \leq 2n - 1$. In algerbas, however, we conjecture that if A is an algebra with property P_1 then, $dimA \leq n$. Furthermore, if dimA = n, then A is a maximal P_1 algebra.

Ampliations Semi-Simple Algebras

Ampliations

The 2-ampliation of a space *S* is the a new space $S^{(2)} = \begin{pmatrix} S & 0 \\ 0 & S \end{pmatrix}$. Similarly, the *n*-ampliation of *S* is the space $S^{(n)} = \begin{pmatrix} S & 0 \dots \\ & \ddots \\ 0 & \dots & S \end{pmatrix}$ Let $A = M_n(\mathbb{C})$. Then, $S^{(n)}$ has property P_1 because it has a separating vector. The separating vector can be constructed as $\bigoplus_{i=1}^{n} e_i$.

伺下 イヨト イヨト

Ampliations Semi-Simple Algebras

Semi-Simple Algebra

A semi-simple algebra $A \subset M_n(\mathbb{C})$ is an algebra that can be written as the direct sum of full matrix algebras ampliated to their respective dimension. That is, $A = \bigoplus_{i=1}^k M_{n_i}^{(n_i)}(\mathbb{C})$.

Example:
$$\mathbb{C} \oplus M_2^{(2)}(\mathbb{C}) = \begin{pmatrix} \lambda & 0 & 0 & 0 & 0 \\ 0 & a & b & 0 & 0 \\ 0 & c & d & 0 & 0 \\ 0 & 0 & 0 & a & b \\ 0 & 0 & 0 & c & d \end{pmatrix}$$

・ロン ・回と ・ヨン ・ヨン

Ampliations Semi-Simple Algebras

Semi-Simple Algebras have P_1

Let $A = \bigoplus_{i=1}^{k} A_i$. If each A_i has a separating vector, then A_i has a separating vector, then A has a separating vector.

・ロン ・回と ・ヨン ・ヨン

Ampliations Semi-Simple Algebras

Semi-Simple Algebras have P_1

Let $A = \bigoplus_{i=1}^{k} A_i$. If each A_i has a separating vector, then A_i has a separating vector, then A has a separating vector. Let B be a semi simple algebra. Then, $B = \bigoplus_{i=1}^{k} M_{n_i}^{(n_i)}(\mathbb{C})$. Each $M_{n_i}^{(n_i)}(\mathbb{C})$ is an n_i ampliation of $M_{n_i}(\mathbb{C})$, and therefore has a separating vector.

Ampliations Semi-Simple Algebras

Semi-Simple Algebras have P_1

Let $A = \bigoplus_{i=1}^{k} A_i$. If each A_i has a separating vector, then A_i has a separating vector, then A has a separating vector.

Let *B* be a semi simple algebra. Then, $B = \bigoplus_{i=1}^{k} M_{n_i}^{(n_i)}(\mathbb{C})$. Each $M_{n_i}^{(n_i)}(\mathbb{C})$ is an n_i ampliation of $M_{n_i}(\mathbb{C})$, and therefore has a separating vector.

Each $M_{n_i}^{(n_i)}(\mathbb{C})$ has property a separating vector, so *B* has a separating vector.

Ampliations Semi-Simple Algebras

Semi-Simple Algebras are Maximal P₁ Algebras

Theorem

Let $B \subset M_k(\mathbb{C})$ be a semi-simple algebra. If B has property P_1 , then dim $B \leq k$. Furthermore, if dimB = k, then B is a maximal P_1 algebra.

This result supports the idea that if $B \subset M_n(\mathbb{C})$ is an algebra with property P_1 , then dim $B \leq k$.

Dimension Further Directions

Dimension

Conjecture

Let $A \subset M_n(\mathbb{C})$ be an algebra with property P_1 . Then dim $A \leq n$.

Conjecture

Let $A \subset M_n(\mathbb{C})$ be an algebra with property P_1 . Then A has a separating vector.

So far, no counterexamples have been noticed.

・ロト ・回ト ・ヨト ・ヨト

Dimension Further Directions

Classifications of $M_n(\mathbb{C})$

In $M_2(\mathbb{C})$, all P_1 spaces have been classified. This work has not been carried on past $M_2(\mathbb{C})$. We have started on $M_3(\mathbb{C})$ and $M_4(\mathbb{C})$ P_1 algebras.

イロン イヨン イヨン ・

Dimension Further Directions

Bases and Frames

Let $\{x_i\}_{i=1}^n$ be a basis for \mathbb{R}^n . Let $y_i = x_i \otimes x_i$. Does the space $S = [y_i]_{i=1}^n$ have property P_1 ? In 2-dimensions, this is possible. Let $\{x_i\}_{i=1}^k$ be a frame for \mathbb{R}^n , $n \leq k$. let $y_i = x_i \otimes x_i$ Let $S = [y_i]$ When does S have property P_1 ?

Dimension Further Directions

End

Thank you to Dr. Fang, Dr. Larson, and Texas A&M University!

Stephen Rowe On Property P₁ and Spaces of Operators

イロン イヨン イヨン イヨン

э